We compute ground-state and dynamical properties of 4He and 16O nuclei using as input high-resolution, phenomenological nucleon-nucleon and three-nucleon forces that are local in coordinate space. The nuclear Schrödinger equation for both nuclei is accurately solved employing the auxiliary-field diffusion Monte Carlo approach. For the 4He nucleus, detailed benchmarks are carried out with the hyperspherical harmonics method. In addition to presenting results for the binding energies and radii, we also analyze the momentum distributions of these nuclei and their Euclidean response function corresponding to the isoscalar density transition. The latter quantity is particularly relevant for lepton-nucleus scattering experiments, as it paves the way to quantum Monte Carlo calculations of electroweak response functions of 16O.