One-loop matching of the CP-odd three-gluon operator to the gradient flow

Ă’scar L. Crosas, Christopher J. Monahan, Matthew D. Rizik, Andrea Shindler, Peter Stoffer


[arXiv:2308.16221]

The calculation of the neutron electric dipole moment within effective field theories for physics beyond the Standard Model requires non-perturbative hadronic matrix elements of effective operators composed of quark and gluon fields. In order to use input from lattice computations, these matrix elements must be translated from a scheme suitable for lattice QCD to the minimal-subtraction scheme used in the effective-field-theory framework. The accuracy goal in the context of the neutron electric dipole moment necessitates at least a one-loop matching calculation. Here, we provide the one-loop matching coefficients for the CP-odd three-gluon operator between two different minimally subtracted 't Hooft–Veltman schemes and the gradient flow. This completes our program to obtain the one-loop gradient-flow matching coefficients for all CP-violating and flavor-conserving operators in the low-energy effective field theory up to dimension six.

Newer All papers Older