EDM-3: Schiff Moments

J. Engel

June 1, 2023

One Way Things get EDMs

We all believe that there is BSM CP violation.

It can work its way into hadrons and nuclei, e.g., through CP-violating πNN vertices ...

leading, e.g. to a neutron EDM...

NTNP Slide from Kickoff Meeting

How Diamagnetic Atoms Get EDMs

The nucleus gets an EDM from the nucleon EDM and a *T*-violating *NN* interaction:

 $V_{PT} \propto \bar{g}g \times (\boldsymbol{\sigma}_1 \pm \boldsymbol{\sigma}_2) \cdot (\boldsymbol{\nabla}_1 - \boldsymbol{\nabla}_2) \frac{\exp\left(-m_{\pi}|\boldsymbol{r}_1 - \boldsymbol{r}_2|\right)}{m_{\pi}|\boldsymbol{r}_1 - \boldsymbol{r}_2|} + \text{contact terms/etc.}$

Atoms get EDMs from nuclei. Electronic shielding replaces nuclear dipole operator with "Schiff operator,"

$$S \propto \sum_{p} \left(r_p^2 - \frac{5}{3} R_{ch}^2 \right) z_p + \dots,$$

making relevant nuclear quantity the Schiff moment:

$$\langle S \rangle = \sum_{m} \frac{\langle O | S | m \rangle \langle m | V_{PT} | O \rangle}{E_{O} - E_{m}} + c.c.$$

How Diamagnetic Atoms Get EDMs

making relevant nuclear quantity the Schiff moment:

$$\langle S \rangle = \sum_{m} \frac{\langle O | S | m \rangle \langle m | V_{PT} | O \rangle}{E_{O} - E_{m}} + c.c.$$

¹⁹⁹Hg and ¹²⁹Xe: Soft and Complicated

¹⁹⁸Hg has a very soft oblate minimum.

Prassa et al., EPJ Web Conf. 252 02007 (2021).

Shell-Model Representation

Will construct an *ab initio* shell-model interaction that includes the CP-violating part.

More on Ab Initio Shell-Model Calculation

Valence-Space IMSRG: Include V_{PT} as part of the Hamiltonian, so that the flow generator η and the transformed Hamiltonian will have negative-parity parts η^- and H^- :

$$H(\mathbf{s}) = H_+(\mathbf{s}) + \lambda H_-(\mathbf{s}) + O(\lambda^2) \qquad \eta = \eta_+(\mathbf{s}) + \lambda \eta_-(\mathbf{s}), \quad \lambda \ll 1$$

with

$$H_+(0) = T + V_{\chi}$$
 $H_-(0) = V_{PT}$, for some \bar{g}

Grouping by powers of λ :

$$\frac{dH_{+}(s)}{ds} = [\eta_{+}(s), H_{+}(s)] + O(\lambda^{2})$$
$$\frac{d}{ds}H_{-}(s) = [\eta_{+}(s), H_{-}(s)] + [\eta_{-}(s), H_{+}(s)] + O(\lambda^{2})$$

 η_+ and H_+ are what you get without V_{PT} .

You then evolve the Schiff operator, which develops a positive-parity part.

Ragnar, UNC postdoc David Kekejian, and I are working on this already.

A Little on Pear-Shaped Nuclei

Because V_{PT} is so weak:

$$\langle S \rangle = \sum_{i \neq 0} \frac{\langle O|S|i \rangle \langle i|V_{PT}|O \rangle}{E_0 - E_i} + c.c.$$

 $\approx \frac{\langle O|S|\overline{O} \rangle \langle \overline{O}|V_{PT}|O \rangle}{E_0 - E_{\overline{O}}} + c.c.$

Mixing of the two states in the parity doublet by V_{PT} is the whole story here.

Schiff moments can be enhanced by two orders of magnitude or more. IM-GCM for Schiff Moment of ²²⁵Ra and Similar Nuclei

Required Improvements to Method

- More nucleons =
- larger spaces
 - = more memory, processors
 - code refactorization for efficient supercomputer use

Odd nuclei

> Tests of chiral interactions in really heavy nuclei.

Milestones/Synergy

MSU, ND, UNC work:

- Y1 Develop software and file formats to deploying EFT transition operators in *ab* initio calculations.
- Y1 Preliminary VS-IMSRG result for the Schiff moment of ¹⁹⁹Hg.
- Y2 Exploration of uncertainties in VS-IMSRG Schiff moments of ¹⁹⁹Hg and ¹²⁹Xe.
- Y3 Results with uncertainties for Schiff moments of ¹⁹⁹Hg and ¹²⁹Xe.
- Y4 Preliminary IM-GCM Schiff moment in ²²⁵Ra.
- Y5 Results with uncertainties for Schiff moments of ²²⁵Ra.

More Synergy?

- Coupled-cluster calculations?
- Comparison with QMC in light nuclei?
- EFT and QCD people: connecting V_{PT} with underlying models? Regulating counter terms? Higher order in chiral EFT?
- Your suggestion here