Nuclear Structure (and Dynamics) Thrust

Heiko Hergert

Facility for Rare Isotope Beams & Department of Physics and Astronomy Michigan State University

NTNP Goals and Objectives

• **BETA-3**

- Y1: Develop software and file formats to deploy EFT transition operators in ab initio calculations. [MSU, ND, ORNL/UTK, UNC, ...] ←→ [BETA-2]
- Y1: Convergence analysis for (superallowed) beta decays using VS-IMSRG and IM-GCM. [MSU, ND, UNC, ...]
- Y1: R&D to compute δ_C , δ_{NS} corrections in HOBET. [UCB] \longleftrightarrow [BETA-2]
- Y2: Compute δ_C in superallowed beta decays in VS-IMSRG and IM-GCM. [MSU, ND, ...]
- Y3: Calculation of δ_C , δ_{NS} in light nuclei with various methods & benchmarking [ANL, LANL, MSU, ND, ORNL/UTK, UNC, WUSTL, ...]
- Y4: R&D for using QMC with STA for calculation of δ_{NS} . [ANL, LANL, ODU, WUSTL, ...] \longleftrightarrow [MSU, ND ORNL/UTK] ?
- Y4 & Y5: Ab initio calculations of δ_C, δ_{NS} in light and medium-mass nuclei.

BETA-4

• Y5: Study impact of ab initio calculation of δ_C , δ_{NS} on CKM unitarity [LANL, UMass, UW] \longleftrightarrow [BETA-3]

NTNP Goals and Objectives

- EDM-3 [MSU, ND, UNC, ...]
 - Y1: Develop software and file formats to deploy EFT transition operators in ab initio calculations
 - Y1: Preliminary VS-IMSRG result for the Schiff moment of ¹⁹⁹Hg
 - Y3: VS-IMSRG results with uncertainties for Schiff moments of ¹⁹⁹Hg and ¹²⁹Xe
 - Y4: Preliminary IM-GCM Schiff moment in ²²⁵Ra
 - Y5: IM-GCM Schiff moment for ²²⁵Ra with uncertainty analysis

NTNP Goals and Objectives

- XSEC-4 [ANL, LANL, ODU, WUSTL ...]
 - Y4: Calculations of inclusive electroweak cross sections in A = 4,12,16 nuclei with QMC methods supplemented by factorization schemes (Short-Time-Approximation and Spectral Function formalism).
 - Y4: R&D for ⁴⁰Ca
 - Y5: Electroweak cross sections in ⁴⁰Ca
- XSEC-5 [ANL, LANL, ODU, WUSTL ...]
 - Y3: Relativistic effects in the STA and tests on 4He. R&D to extend STA to include exclusive channel.
 - Y4: Relativistic effects in STA and tests on $_{12}$ C. Preliminary results in STA of π production induced by electrons for A = 3. Exclusive results for neutrino- and
 electron- $_{12}$ C cross sections in SF formalism.
 - Y5: Determination of theoretical uncertainties in calculations of inclusive and exclusive cross sections induced by lepton scattering.

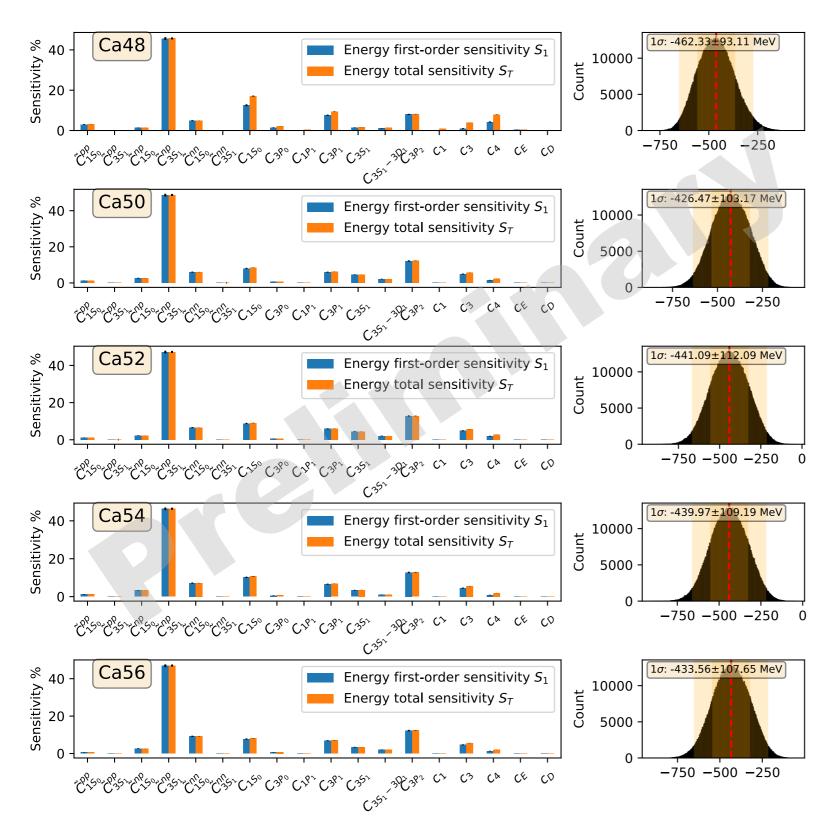
Nuclear Structure Teams

- MSU: S. Bogner, H. Hergert
- Notre Dame: R. Stroberg
- UNC-Chapel Hill: J. Engel
- ODU: A. Gnech, R. Schiavilla,
- ORNL / UTK: G. Hagen, T. Papenbrock
- ANL: A. Lovato, N. Rocco, R. Wiringa
- WUSTL: L. Andreoli, G. King, J. Bub, S. Pastore, M. Piarulli, A. McCoy

Challenges: Many-Body Methods

- continuous efficiency improvements (proactive sharing)
 - leverage potential synergies with other efforts (e.g., NUCLEI SciDAC)
- improvements to many-body truncations
 - necessary ingredient for uncertainty quantification
- necessary extensions of many-body methods
 - IM-GCM: odd nuclei
 - CC: symmetry projection, triaxial deformation (maybe?)
 - summation over intermediate states (e.g. for computation of δ_{NS}) or alternative ideas?

Uncertainty Quantification



- major advances through the systematic use of Bayesian techniques (e.g. history matching...) and emulators
- reduced-basis methods (e.g., eigenvector continuation)
 for wave-function methods: NCSM, SA-NCSM, Coupled
 Cluster
- new: parametric emulator for IMSRG flows based on Dynamic Mode Decomposition
- new: Gaussian process emulators for VS-IMSRG transition matrix elements

Parametric DMD

J. Davison, J. Crawford, S. Bogner, HH, in preparation

- NNLO_{sat}, NN+3N
- $e_{max} = 12$, $E_{3max} = 14$
- 1M+ samples
- 5+ order of magnitude reduction in computational effort

Uncertainty Quantification

- major advances through the systematic use of Bayesian techniques (e.g. history matching...) and emulators
- reduced-basis methods (e.g., eigenvector continuation) for wave-function methods: NCSM, SA-NCSM, Coupled Cluster
- new: parametric emulator for IMSRG flows based on Dynamic Mode Decomposition
- new: Gaussian process emulators for VS-IMSRG transition matrix elements
- Emulators/model reduction for free-space SRG?
- Emulation for QMC methods?

Implementation and Deployment

Y1: Develop software and file formats to deploy EFT transition operators in ab initio calculations

- consistent transition operators from EFT (and LQCD?)
 thrusts ←→ [BETA-2] (EDMs?)
 - routines for momentum- and coordinate-space expressions (Jacobi variables) - maybe Jacobi HO?
 - contributions separated by LEC, to facilitate interfacing with emulators
- may require adaptations to existing workflows because of symmetry breaking

Discussion

- Collaboration repository for codes and matrix elements?
- Echoing previous talk(s) Slack (or alternative) workspace?
- Announce and proactively share new tools
- Maintain list of expertise a la FRIB Theory Alliance?

Name	Email address	Website	Areas of current interest	Resources (formal, computational, theory networks/collaboration) available	Other areas of expertise	Wish list for experimental data
Alex Brown	brown@nscl.msu.edu	https://people.nscl.msu.edu/~brown/	Structure of sd shell nuclei (Structure includes beta and gamma decay, moments, One and two nucleon spectroscopic factors) Structure of pf shell nuclei Structure of pf shell nuclei Structure for Z=28-60 up to N=56 Structure for Z=28-60 up to N=68 Structure into regions of 1325n and 208Pb Rms radii and neutron skins connected to the neutron equation of state Rapid-proton capture rates Level densities from the shell model Structure aspects of double Di-proton decay	Shell-model codes Oxbash and NuShellX		Structure data for the regions of 42Si, 60Ca, and 78Ni Rms charge radii of proton-rich nuclei
litek Nazarewicz	witek@frib.msu.edu	https://people.nscl.msu. edu/~witek/www/Nazarewicz.htm	Nuclear structure; global properties of nuclei; nuclear collective motion Deory spectroscopy; physics of open systems Large amplitude collective motion; nuclear fission Nuclear input for nuclear astrophysics Uncertainty quantification for nuclear models; Bayesian inference Hyperfine interactions	NUCLEI SCIDAC (http://nuclei.mps.ohio-state.edu) BAND collaboration (https://www.ohio. edu/news/20/00/6/ohio-leads-new-3-7-million- projectadvanoe- nuclear-physics-experiments) Several international collaborations	High performance computing Theory of open quantum systems	Masses, radii, and moments of radioactive nuclei Spin-Isospin excitations Multi-particle decays; inter-nucleon correlations Data on superheavy nuclei Data on miror nuclei Data on miror nuclei
Jutta Escher	escher1@llnl.gov	https://people.linl.gov/escher1	Improving nuclear structure inputs for nuclear reactions: level densities, gamma-rey strength functions, optical-model potentials integrating nuclear structure and reaction theory: inelastic scattering and transfer reactions indirect methods for determining nuclear reaction cross sections for astrophysics and other applications integrating or statistical and direct reactions, formation, and decay of compound nuclei		Symmetry-based approaches in nuclear structure and reactions	Elastic and inelastic scattering cross sections Decay properties of compound nuclei
aniel Phillips	phillid1@ohio.edu	https://www.ohio.edu/cas/phillid1	Halo nuclei and quantum universality Bayesian inference Astrophysical reactions for light nuclei; R-matrix theory Neutron-neutron interactions	BAND collaboration (https://bandframework.github.io/) BUQEYE collaboration (https://buqeye.github.io/) Collaboration with several physicists at TU Darmstadt	light nuclei	Neutron-neutron correlations in the final state Energies, radii, B(E1) strengths of weakly bound s-wave δ wave states near the driplines
orge Piekarewicz	z jpiekarewicz@fsu.edu	http://web2.physics.fsu.edu/~piekarewicz/	Neutron-rich matter on heaven and earth; Neutron stars, neutron skins, giart resonances; Covariant density functional theory; Bayesian statistics	Calibration and implementation of unified covariant density functional codes to describe ground-state properties of finite nuclei, their linear (RPA) response, and properties of neutron stars.		Masses of exotic neutron-rich nuclei of relevance to the neutron star crust, Neutron densities and neutron skins of very neutron-rich nuclei to constrain EOS; Electric dipole polarizability along isotopic obains; Charge radii of mirror and exotic nuclei; constraints on the EOS at twi saturation density from heavy-ion collisions of highly asymmetric nuclei
evin Fossez	fossez@nscl.msu.edu	https://kevinfossez.github.ia/	Nuclear structure including the continuum (ab initio, shell model); Halo structures, two-neutron/proton decay, many-body resonances. Collective motion.	NUCLEI collaboration; (Ab initio) Gamow shell model (GSM), density matrix renormalization group (DMRG) method, In-medium similarity renormalization group (IMSRG), particle-plus-rotor model.	High-performance computing. Shell model interactions. Radiative capture reactions, alpha clustering.	Energies and spin-parity at the drip lines in the sdfp region Decay widths and decay channels. Beta-decay spectroscopy of proton-rich nuclei.
ilomena Nunes	nunes@frib.msu.edu	https://fimmnunes.wixsite.com/mysite	direct nuclear reactions, few-body methods for reactions, optical potential, uncertainty quantification in reactions		Halo nuclei and few-body models for halos	systematic study of elastic on several isotopic chains. simultaneous measurement of breakup and elastic. transfe measurements on neutron rich heavy nuclei
lean Lee	leed@frib.msu.edu	https://leedeanj.wixsite.com/leegroup	nuclear clustering, forces, structure, thermodynamics, liquid-gas transition, equation of state, superfluid pairing, microscopic calculations	NUCLEI collaboration Nuclear Lattice EFT Collaboration	Quantum computing Machine learning	Cluster states, nuclear correlations, multifragmentation distributions
Ion Engel	engelj@physics.unc.edu https: //physics.unc.edu/engelj/	http://www.physics.unc.edu/~engeli/	Fundamental symmetries in nuclei: double-beta decay, atomic electric dipole moments. Nuclear satrophysics: weak interactions in nucleosynthesis, r process. Nuclear structure: density-functional theory, in-medium generator-poordinate method.	DBD Topical Theory Collaboration NUCLEI collaboration	Group theoory in nuclear physics	Beta-decay spectroscopy Strength distributions for forbidden/retarded operators