Fundamental Symmetries in Nuclei: Tackling the Strong Interaction and Hunting for New Physics

M.J. Ramsey-Musolf

- *T.D. Lee Institute/Shanghai Jiao Tong Univ.*
- *UMass Amherst*
- *Caltech*

About MJRM:

Science Family Friends

My pronouns: he/him/his # MeToo

- *[mjrm@umass.ed](mailto:mjrm@sjtu.edu.cn)u*
- *[mjrm@sjtu.edu.c](mailto:mjrm@sjtu.edu.cn)n*
- 微信 : *mjrm-china*

NTNP Meeting, Seattle June 1, 2023

- *Provide the NTNP collaboration a framework for communicating the scientific motivation, significance, and impact of FSNN theory to our colleagues within and beyond nuclear physics*
- *Illustrate the multifaceted role for FSNN theory in this context*
- *Summarize some of the open challenges that the NTNP collaboration can address*

- *Fundamental symmetry tests with nuclei & hadrons address compelling questions about the fundamental* laws of nature both within and beyond the Standard *Model*
- *Advances in experimental sensitivities challenge theory to push the state-of-the-art in Standard Model computations and delineate the broader implications of of these experiments for our understanding of the strong interaction and beyond Standard Model physics*
- *Theoretical developments are meeting this challenge head on, uncovering new puzzles, and pointing toward the next horizon in experimental sensitivity*

- *Most of the work referred to in this talk will involve my collaborations – due to time limitations in preparing this talk and not due to any judgement about the importance of work not cited*
- *Many colleagues have made important contributions not cited today, and our field is enriched by this work*
- *I owe a debt of gratitude to the many students, postdocs, and faculty collaborators with whom I've had the privilege of working over the years on the topics discussed today*

Outline

I. Context: Scientific Quest

II. Four Quests

Today

Time

permitting

Parity-violation with electrons *B.* b-*Decay: 65 years after Wu et al* **Lepton Number:** $0\nu\beta\beta$ **-Decay** *D. CP: Electric Dipole Moments & the Origin of Matter*

III. Concluding Remarks

I. Context

Fundamental Questions

Matter, Energy & Mass

Origin of m_f
Beyond Standard Model

Nucleon & Nuclear Structure

How does QCD build nucleons and nuclei with quarks & gluons ?

Nuclear Science Strategic Vision

- 1. How did visible matter come into being and how does it evolve?
- 2. How does subatomic matter organize itself and what phenomena emerge?
- 3. Are the fundamental interactions that are basic to the structure of matter fully understood?
- 4. How can the knowledge and technical progress provided by nuclear physics best be used to benefit society?"
- What are the absolute masses of neutrinos. and how have they shaped the evolution of the universe?
- Are neutrinos their own antiparticles?
- . Why is there more matter than antimatter in the present universe?
- What are the unseen forces that disappeared from view as the universe expanded and cooled?

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matterantimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

Nuclei & Hadrons as Laboratories

Illustrative story Challenges (see also CY Seng talk)

- *What level of precision/sensitivity is needed to have significant scientific impact ?*
- *How reliably can we interpret electroweak processes at the nuclear and hadronic scales in terms of*
	- *nucleon & nuclear structure ?*
	- *beyond Standard Model physics ?*
- *What is the theoretical error bar ?*

FSNN Theory: An Urban Legend

Fundamental Physics

FSNN Theory: Comprehensive Role

Fundamental Physics

Theoretical Challenges Connecting physics
Connecting scales

Early Universe

BSM Physics

Precision Electroweak Studies

- *Perturbation theory*
- *Effective Field Theory*

at multiple scales

- *Non-equilibrium QFT*
- *Dispersion Relations*
- *Collider simulations & phenomenology*

IIA. Parity-Violation with Electrons

Parity-Violation & Weak Charges

Parity-Violating electron scattering

$$
A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} Q_W + (F(Q^2, \theta))
$$

"Weak Charge" ≠ 0 in SM Sensitivity to BSM physics

Challenge: reducing the theoretical uncertainties

QCD effects (s-quarks)

Challenge: precision electroweak probe

PV Electron Scattering

Electroweak Radiative Corrections

Volume 242, number 3.4

PHYSICS LETTERS B

14 June 1990

ELECTROWEAK CORRECTIONS TO PARITY-VIOLATING NEUTRAL CURRENT SCATTERING

M.J. MUSOLF Center For Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

and

Barry R. HOLSTEIN Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, USA

PHYSICAL REVIEW D, VOLUME 65, 033001

Electroweak radiative corrections to parity-violating electroexcitation of the Δ

Shi-Lin Zhu,^{1,2} C. M. Maekawa,² G. Sacco,^{1,2} B. R. Holstein,³ and M. J. Ramsey-Musolf^{1,2,4} ¹Department of Physics, University of Connecticut, Storrs, Connecticut 06. ²Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, Calif ³Department of Physics, University of Massachusetts, Amherst, Massachusetts ⁴Theory Group, Thomas Jefferson National Accelerator Facility, Newport News, Vil (Received 10 July 2001; published 20 December 2001)

PHYSICAL REVIEW D

VOLUME 43, NUMBER 9

1 MAY 1991

Observability of the anapole moment and neutrino charge radius

M. J. Musolf Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

> Barry R. Holstein Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 (Received 25 September 1990)

> > PHYSICAL REVIEW D 72, 073003 (2005)

Weak mixing angle at low energies

Jens Erler¹ and Michael J. Ramsey-Musolf²

¹Instituto de Física, Universidad Nacional Autónoma de México, 01000 México D.F., Mexico 2 Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA (Received 21 October 2004; revised manuscript received 11 July 2005; published 13 October 2005)

PV Electron Scattering

Continuous interplay between probing hadron structure and electroweak physics

4 Decades of Progress

Parity-violating electron scattering has become a precision tool

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, radiation hard detectors

PVeS Experiment Summary

www.foliotech.com

Ploneering electron-quark PV DIS experiment SLAC E122

State-of-the-art:

- · sub-part per billion statistical reach and systematic control
- · sub-1% normalization control

Physics Topics

- Strange Quark Form Factors
- Neutron skin of a heavy nucleus
- Indirect Searches for New Interactions
- Novel Probes of Nucleon Structure
- Electroweak Structure Functions at the EIC
- Charge Lepton Flavor Violation at the EIC

K. Kumar

Parity-Violation & Weak Charges

Parity-Violating electron scattering

$$
A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} Q_W + F(Q^2, \theta)
$$

"Weak Charge" ≠ 0 in SM Sensitivity to BSM physics

Challenge: reducing the theoretical uncertainties

Weak Charge & Weak Mixing Near cancellation $Q_W^P = -Q_W^e = 1 - 4\sin^2\theta_W$

Weak mixing depends on scale

Weak Mixing: Energy Scale Dependence

Marciano & Czarnecki '*00 Erler & MJRM '05 Erler & Ferro-Hernandez '18*

Electroweak Radiative Corrections

PHYSICAL REVIEW D 68, 016006 (2003)

Weak charge of the proton and new physics

Jens Erler,^{1,2,*} Andriy Kurylov,^{3,†} and Michael J. Ramsey-Musolf^{2,3,4,‡}
¹Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico ²Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA ³Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA ⁴Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA (Received 27 February 2003; published 17 July 2003)

PHYSICAL REVIEW D 72, 073003 (2005)

Weak mixing angle at low energies

Jens Erler¹ and Michael J. Ramsey-Musolf²

¹Instituto de Física, Universidad Nacional Autónoma de México, 01000 México D.F., Mexico ²Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA (Received 21 October 2004; revised manuscript received 11 July 2005; published 13 October 2005)

Weak Mixing in the SM: Uncertainties

Erler & R-M

Full SU(2)_L x U(1)_Y Renormalization Group

$$
\hat{s}^{2} \frac{d\hat{\alpha}}{dt} - \hat{\alpha} \frac{d\hat{s}^{2}}{dt} = \frac{b_{2}}{\pi} \hat{\alpha}^{2} + \sum_{j} \frac{b_{2j}}{\pi^{2}} \hat{\alpha}^{2} \hat{\alpha}_{j} + \cdots
$$

$$
\sin^2 \hat{\theta}_W(\mu) = \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} \sin^2 \hat{\theta}_W(\mu_0)
$$

$$
+ \frac{\sum_i N_i^c \gamma_i Q_i T_i}{\sum_i N_i^c \gamma_i Q_i^2} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} \right],
$$

- *1.* Relate running of sin² θ_W to running of α
- *2. Run* α **&** sin² θ_W to μ ~ m_c
- 3. *Bound s-quark contribution to* $\alpha(m_c)$ -*relative to u and d contributions -- using* € *symmetry limits: heavy quark and SU(3)f limits*

$$
\Delta \alpha_{\text{HAD}}(M_Z^2) = \frac{\alpha M_Z^2}{3 \pi} P \int_{4m_{\pi}^2}^{\infty} \frac{R(s)}{s(M_Z^2 - s)} ds
$$

$$
R = \sigma (e^+e^- \rightarrow had) / \sigma (e^+e^- \rightarrow \mu^+ \mu^-)
$$

 \sqrt{s} [GeV]

Weak Mixing in the SM: Uncertainties

Erler & R-M

Full SU(2)_I x U(1)_Y Renormalization Group

$$
\hat{s}^{2} \frac{d\hat{\alpha}}{dt} - \hat{\alpha} \frac{d\hat{s}^{2}}{dt} = \frac{b_{2}}{\pi} \hat{\alpha}^{2} + \sum_{j} \frac{b_{2j}}{\pi^{2}} \hat{\alpha}^{2} \hat{\alpha}_{j} + \cdots
$$

$$
\sin^2 \hat{\theta}_W(\mu) = \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} \sin^2 \hat{\theta}_W(\mu_0)
$$

$$
+ \frac{\sum_i N_i^c \gamma_i Q_i T_i}{\sum_i N_i^c \gamma_i Q_i^2} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} \right],
$$

- *1.* Relate running of sin² θ_W to running of α
- *2. Run* α **&** sin² θ_W to μ ~ m_c
- 3. *Bound s-quark contribution to* $\alpha(m_c)$ -*relative to u and d contributions -- using symmetry limits: heavy quark and SU(3)f limits*

$$
\Delta\alpha_{\text{HAD}}(M_Z^2) = \frac{\alpha M_Z^2}{3\,\pi} P \int_{4m_\pi^2}^\infty \frac{R(s)}{s(M_Z^2 - s)} ds
$$

 $R = \sigma (e^+e^- \rightarrow had) / \sigma (e^+e^- \rightarrow \mu^+ \mu^-)$

Uncertainties: $sin^2\theta_W$ *(0) +/-* 3×10^{-5} *:* $\Delta \alpha$ ⁽³⁾(m_c) *+/-* 5 x 10⁻⁵: $\Delta \alpha$ ⁽²⁾(m_s) *+/- 3 x 10-5: OZI +/-* 1.5 x 10⁻⁴ *: sin²* θ_W *(M₇)*

Electroweak Radiative Corrections

PHYSICAL REVIEW D 68, 016006 (2003)

Weak charge of the proton and new physics

Jens Erler,^{1,2,*} Andriy Kurylov,^{3,†} and Michael J. Ramsey-Musolf^{2,3,4,‡}
¹Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico ²Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA ³Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA ⁴Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA (Received 27 February 2003; published 17 July 2003)

PHYSICAL REVIEW D 72, 073003 (2005)

Weak mixing angle at low energies

Jens Erler¹ and Michael J. Ramsey-Musolf²

¹Instituto de Física, Universidad Nacional Autónoma de México, 01000 México D.F., Mexico ²Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA (Received 21 October 2004; revised manuscript received 11 July 2005; published 13 October 2005)

Radiative Correction Uncertainties

Radiative Correction Uncertainties

 $A_{PV} =$ $N_{\uparrow\,\uparrow} - N_{\uparrow\,\downarrow}$ $N_{\uparrow\,\uparrow}+N_{\uparrow\,\downarrow}$ = $G_{\scriptscriptstyle F} \mathcal{Q}^2$ $4\sqrt{2}\pi\alpha$ $\left[Q_W + (F(Q^2, E))\right]$

E-dependent: E = 1.165 GeV

[11] Gorchtein & Horowitz [15] Sibirtsev et al [17] Rislow & Carlson

*** Gorchtein, Horowitz, R-M 1102.3910 [nucl-th]*

€ *uncertainty in QW Equivalent to ~ 2.8%*

 $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$

 e −

 e −

Z

MM

p

p

Includes estimate of model uncertainty

Radiative Correction Uncertainties

$$
A_{PV} = \frac{N_{\uparrow\uparrow} - N_{\uparrow\downarrow}}{N_{\uparrow\uparrow} + N_{\uparrow\downarrow}} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big[Q_W + \Big(\frac{CQ^2 E}{R}\Big) \Big]
$$

[−] *E-dependent: E = 1.165 GeV*

Dispersion Theory : photo- & lepto-production

וגו
במ *Unpack contributions to structure function F^{yZ}*

 \sqrt{y}

 e −

 e

Z

RTVV

p

p

Dominant contributions; scarce data

Measure A_{PV} in extrapolation *region: direct probe of* $F^{\gamma Z}$

Footprints

Early Universe BSM Physics BSM Scale Energy Scale *Energy Scale theorist Weak Scale Theory* % *Precision ~ Experiments* % *BSM mass scale* 32

Intensity Frontier: BSM Footprints

New Symmetries

- 1. Origin of Matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

 W^{-}

High energy searches: does the observed BSM "species" fit the footprints ?

Fundamental symmetry tests: draw inferences about BSM scenarios from a variety of measurements

Precision ~ BSM Mass Scale

$$
\delta_{NEW} \sim C \ (M_W / \Lambda)^2
$$

$$
\Lambda \sim 10 \text{ TeV (tree)}
$$

34

Deviations: BSM "Footprints"

PV Electron Scattering: Diagnostic Tool

PV Electron Scattering

Continuous interplay between probing hadron structure and electroweak physics

4 Decades of Progress

Parity-violating electron scattering has become a precision tool

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, radiation hard detectors

PVeS Experiment Summary

Ploneering electron-quark PV DIS experiment SLAC E122

State-of-the-art:

- · sub-part per billion statistical reach and systematic control
- · sub-1% normalization control

Physics Topics

- Strange Quark Form Factors
- Neutron skin of a heavy nucleus
- Indirect Searches for New Interactions
- Novel Probes of Nucleon Structure
- Electroweak Structure Functions at the EIC
- Charge Lepton Flavor Violation at the EIC

Deviations: BSM "*Footprints*"

Two-Loop EW Radiative Corrections

Closed fermion loops: gauge invariant

¹Amherst Center for Fundamental Interactions, Physics Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003 USA ²Pittsburgh Particle Physics Astrophysics and Cosmology Center (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA ³Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064, USA ⁴Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China ⁵Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 USA

Received 17 January 2020; revised 22 July 2020; accepted 23 February 2021; published 29 March 2021)

Two-Loop EW Radiative Corrections

 $\frac{1}{2} \delta(Q^e w) = \pm 2.1$ % (stat.) ± 1.1 % (syst.) **Exp't precision (goal)**

Du, Freitas, Patel, MJRM PRL 126 (2021) 131801 [1912.08220]

PV Moller Scattering

Search for additional neutral weak force that is inaccessible to the Large Hadron Collider

Type II Seesaw: H++ Dark Sector: Z'

PV Moller Scattering

Interplay with $0\nu\beta\beta$ *decay & collider searches*

Type II Seesaw & H++ : G. Li, MJRM, S. Urrutia-Quiroga, J.C. Vasquez

Minimal LR Symmetric Model: 0νββ-Decay

Thanks! Juan Carlos Vasquez

Long range chiral enhancement

PVES: Lessons

- *Integrated treatment of physics at a wide range of* **scales** is essential \rightarrow draws on multiple theoretical *tools and variety of expertise*
- *Sustained effort over many years required*
- *Close collaboration with experimentalists: experimental advances challenge theory while theoretical advances open new horizon for experiment*
- *Fundamental interaction physics is multifaceted & dynamic → must continually incorporate results from multiple frontiers*

III. Concluding Remarks

46

FSNN Theory: Comprehensive Role

Fundamental Physics

Theoretical Challenges Connecting physics
Connecting scales

Early Universe

BSM Physics

Precision Electroweak Studies

- *Perturbation theory*
- *Effective Field Theory*

at multiple scales

- *Non-equilibrium QFT*
- *Dispersion Relations*
- *Collider simulations & phenomenology*

+ other important methods not in my personal scientific tool kit !

Experiments

48

Theory

theorists

Nuclear

- *Fundamental symmetry tests with nuclei & hadrons address compelling questions about the fundamental* laws of nature both within and beyond the Standard *Model*
- *Advances in experimental sensitivities challenge theory to push the state-of-the-art in Standard Model computations and delineate the broader implications of of these experiments for our understanding of the strong interaction and beyond Standard Model physics*
- *Theoretical developments are meeting this challenge head on, uncovering new puzzles, and pointing toward the next horizon in experimental sensitivity*

Theory & Exp't: Close Collaboration Career-long teamwork !

Global analysis of nucleon strange form factors at low Q^2

Jianglai Liu,* Robert D. McKeown, and Michael J. Ramsey-Musolf[†] W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA (Received 1 June 2007; published 2 August 2007)

ECHNOLO

REAL MASTITL

Exciting Challenges Remain

Atomic EDMs

Future Circular e+e- & pp

Electron-nucleus interaction

Welcome to join !

"Old School" theoretical physics

Electroweak precision calc's

Thank You !

Back Up Slides

IIB. Beta-Decay

$\Delta_{CKM} \sim C$ (V/Λ)²

Re="

¼

 $\mathcal{L}_{\mathcal{A}}^{(k)}$ be the positive of $\mathcal{L}_{\mathcal{A}}^{(k)}$

 $\mathcal{L}_{\mathcal{A}}$. (1.4) $\mathcal{L}_{\mathcal{A}}$ is the property of $\mathcal{L}_{\mathcal{A}}$. (1.4) $\mathcal{L}_{\mathcal{A}}$ is the property of $\mathcal{L}_{\mathcal{A}}$

underlying universality of CC interactions of leptons and

quarks is obscured by the mismatch between quark flavor

and mass eigenstates—leading ultimately to the Cabibbo-

Kobayashi-Maskawa (CKM) matrix—but is otherwise

intact. Today, the most stringent tests of lepton-quark

universality involve the first row CKM unitarity relation,

[5]. This agreement with the SM places stringent con- $A \leq 1$ and $A \leq 1$ and ^L [~] *10 TeV (tree)* ^L < *1 TeV (loop)*

CKM Unitarity & BSM Physics

$d \rightarrow u e^{-} \overline{v}_{e}$	$\left(u \rightarrow u e^{-} \overline{v}_{ce} \right)$	$\left(u \rightarrow u e^{-} \overline{v}_{ca} \right)$	$V_{us} \rightarrow V_{ub}$	V_{ub}
$b \rightarrow u e^{-} \overline{v}_{e}$	$(u \rightarrow u e^{-} \overline{v}_{ca} \overline{v}_{cd} \overline{v}_{cd} \overline{v}_{cd} \overline{v}_{cd})$			
$\left(u \rightarrow u e^{-} \overline{v}_{ac} \overline{v}_{cd} \over$				

 $\mathbf v$

€

€

e
€€

Next generation: ~ 10-4 precision

SM Theory: Radiative Corrections & Ft Values \overline{O} *MWe* \overline{a} pul
Loc ↵ **ction** *Z* ⇤2 ◆ + *C^W* (⇤)

$Correted$ *ft* values:

1

6

*Q*² + *M*²

! *^r*²

*M*²

! *^r*²

⇡

 \mathbb{R}^2

I.

^R) (1 + *NS C*) (3)

Theoretical Challenge: Wy Box

Dominant source of uncertainty:

γ *W* \bm{V}_{e} $O⁺(i)$ $0^{+}(f)$

<u>Short distance:</u> perturbative

R R Cong distance: R C non-perturbative

Long distance

Sensitive to hadronic & nuclear dynamics

(4)

CKM = 0*.*0006 *±* 0*.*0005 (1)

Theoretical Challenge: Wy Box

Dominant source of uncertainty:

γ *W* \bm{V}_{e} $O⁺(i)$ $0^{+}(f)$

1 + *NS*

E

non-perturbative

Ņ

perturbative

Long distance

Sensitive to hadronic & nuclear dynamics

Dispersion Relations: Incorporate experimental data

(4)

CKM = 0*.*0006 *±* 0*.*0005 (1)

*Input for C*g*^W : Had & Nuc Response F'n* ator for the nucleus-dependent isospin symmetry break-*R* Solut for C_{ur} Had $f(x) = \frac{1}{2} m^2$ for nuclear structure corrections within the *W*-box. The Muc Doenoneo. E INUL FILOPULSE I II

nucleon.

Nuclei

Here, 0

similar to that for a free nucleon in Fig. 4, the lower

^R is the nuclear charge-dependent outer correc-

Nuclei Free nucleons and nucleus-box on a universal and nucleus-box on a universal and nucleus-box on a univers

a detailed discussion in Ref. [5] which contains the list of

PHYSICAL REVIEW LETTERS 121, 241804 (2018) $\frac{1}{\sqrt{2}}$ in put from intermediate and $\frac{1}{\sqrt{2}}$ in $\frac{1}{\sqrt{2}}$ intermediate and $\frac{1}{\sqrt{2}}$ FIG. 4: Idealized structure of virtual photoabsorption on the

Reduced Hadronic Uncertainty in the Determination of V_{ud}

Chien-Yeah Seng,¹ Mikhail Gorchtein,^{2,*} Hiren H. Patel,³ and Michael J. Ramsey-Musolf^{3,4} ¹ INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics,
Astrophysics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, C ²Institut für Kernphysik, PRISMA Cluster of Excellence Johannes Gutenberg-Universität, Mainz D-55128, Germany
³Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
⁴Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA

weak interaction. In this Section we argue that with the Section we argue that with the section we argue that

*† [|]X*i h*X[|] ^J*⌫

Interlude: β – Decay, V_{ud} , & CKM Unitarity

Z ¹

d<mark>x</mark>FpQCD<mark>Q</mark>

^V ^þ ^Q²Þ. We include a threshold

which smoothly vanishes at the two-pion threshold point

*Input for C*g*^W : Had & Nuc Response F'n* ator for the nucleus-dependent isospin symmetry break-*R* Solut for C_{ur} Had $f(x) = \frac{1}{2} m^2$ for nuclear structure corrections within the *W*-box. The Muc Doenoneo. E INUL FILOPULSE I II

Nuclei

Here, 0

^R is the nuclear charge-dependent outer correc-

PHYSICAL REVIEW D 100, 013001 (2019)

FIG. 8: Idealized structure of virtual photoabsorption on a nucleus. In the property of th and nuclear β decay

Chien-Yeah Seng,^{1,2,*} Mikhail Gorchtein,^{3,6,†} and Michael J. Ramsey-Musolf^{4,5,‡} ¹INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China
²Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Visualize Ibn, 53115 Bonn, Germany
³Institut für Kemphysik, PRISMA Cluster of Excellence Johannes Gutenberg-Universität,
55128 Mainz, Germany ⁴ Amherst Center for Fundamental Interactions, Department of Physics,
University of Massachusetts, Amherst, Massachusetts 01003, USA 5 Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 USA 6 Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

similar to that for a free nucleon in Fig. 4, the lower

Nuclei Free nucleons and nucleus-box on a universal and nucleus-box on a universal and nucleus-box on a univers

weak interaction. In this Section we argue that with the Section we argue that with the section we argue that

a detailed discussion in Ref. [5] which contains the list of

*† [|]X*i h*X[|] ^J*⌫

Leptoproduction: Had & Nuc Response for nuclear structure corrections within the *W*-box. The latter two corrections combined together should be un- \blacksquare in what follows, we follow the modification of the modification of the free the modification of the free t **nucleon Born Correction Correction** au a nu de treatment of the other

Nuclei

Here, 0

^R is the nuclear charge-dependent outer correc-

Nuclei Free nucleons and nucleus-box on a universal and nucleus-box on a universal and nucleus-box on a univers

a detailed discussion in Ref. [5] which contains the list of

Impact on δ_{NS}

picture with a single-nucleon knock of the single-nucleon knock of the single-nucleon knock of the single-nucleon \mathcal{L}_max

do et al, PLB 595 (2004) 2

 1 ± 0.7

 \mathbf{L} $\mathbf{\Delta}$ $\mathbf{0.1}$

.-

4

-

do et al. PLB 595 (2004

do et al, PLB 595 (2004) 250

66

Other Nuclear Corrections for nuclear structure corrections within the *W*-box. The latter two corrections combined together should be un- \blacksquare In what follows, we follow the modification of the free \blacksquare *r* Corrections \blacksquare of the Centre and the other of the other

Nuclei

Here, 0

^R is the nuclear charge-dependent outer correc-

Nuclei Free nucleons and nucleus-box on a universal and nucleus-box on a universal and nucleus-box on a univers

a detailed discussion in Ref. [5] which contains the list of

$0^+ \rightarrow 0^+$ *Decay:* δ_{NS}

$0^+ \rightarrow 0^+$ *Decay:* δ_{NS}

$0^+ \rightarrow 0^+$ *Decay:* δ_{NS}

J. Engel

EDMs & SM Physics

$d_n \sim (10^{-16} \text{ e cm}) \times \theta_{\text{QCD}} + d_n^{\text{CKM}}$
$$
d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}
$$

 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$
c. $\text{Seng arXiv: } 1411.1476$

d ~ (10⁻¹⁶ e cm) $x (v / A)^2$ *x* sin ϕ *x* y_f *F*

d ~ (10⁻¹⁶ *e cm) x* (*v* / *A*)² *x* $\left|\frac{\sin \phi}{x}y_f\right|$ *f CPV Phase: large enough for baryogenesis ?*

$$
d \sim (10^{-16} \text{ e cm}) \times \left[\frac{(\frac{V}{\Lambda})^2}{\Lambda} \right] \times \sin \phi \times y_f
$$

BSM mass scale: TeV? Much higher?

^u *= 246 GeV Higgs vacuum expectation value* ^L *> 246 GeV Mass scale of BSM physics*

d ~ (10⁻¹⁶ *e cm) x* (*v* / Λ)² *x sin* ϕ *x* y_fF

BSM dynamics: perturbative? Strongly coupled?

Fermion f Yukawa coupling F Function of the dynamics

- *Baryon asymmetry Cosmic Frontier*
- *High energy collisions Energy Frontier*
-

• *EDMs Intensity Frontier*

Specific Illustrations: "Portals"

Where is BSM CPV hiding ?

The Higgs Portal

What is the CP Nature of the Higgs Boson ?

- *Interesting possibilities if part of an extended scalar sector*
- *Two Higgs doublets ?*

 $H \rightarrow H_1$, H_2

• *New parameters:*

tan β *= <H₁> / <H₂> sin* α_b

What is the CP Nature of the Higgs Boson ?

- *Interesting possibilities if part of an extended scalar sector*
- *Two Higgs doublets ?*

 $H \rightarrow H_1$, H_2

• *New parameters:*

$$
\tan \beta = <\!H_1
$$
 > $/
\n
$$
\sin \alpha_b
$$
\nCPV : scalar-pseudoscalar
\nmixing from V(H₁, H₂)$

Higgs Portal CPV: EDMs

2014 Status

CPV & 2HDM: Type II illustration late that the late of λ_{67} = 0 for simplicity

 \mathcal{H} esent \mathcal{M}_c , type-I model: type-I model: type-I model: type-II model. The model parameters row: type-II model parameters row: type-II model parameters row: type-II model. The model parameters row: type-II $U_{\rm min}$ $T_{\rm min}$ $T_{\rm min}$ as $U_{\rm min}$ matrix elements are used. Left: Combined currents are used. Left: Combined curre $d_n \times 0.7$ combined function $d_n \times 0.1$ combined by one order order of magnitude. Also by one order of magnitude. Also by one order of magnitude by one order of magnitude. Also by one order of magnitude. Also by one order $\frac{1}{\sqrt{N}}$ if the future constraints in $\frac{1}{\sqrt{N}}$ in blue dashed curves). Right: Ri combined function $d_A(Hg) \times 0.1$ d_A(Hg) \times 0.1 om a_n : elements, there is guidance from analysis, and account the chiral structures of $t_{A}(Ra)$ $[10^{27}$ e cm $]$ and $d_{A}(Ra)$ and the Weinberg and the Wei Present *New ThO: ACME Future:*
 ACME d_n x 0.1 *sin* α_b *: CPV*

dn x 0.1 dA(Hg) x 0.1 dThO x 0.1

signs of the matrix elements. We highlight two places where these uncertainties can change our results. *Inoue, R-M, Zhang: 1403.4257*

Future: dn x 0.01 dThO x 0.1 dA(Ra)

three-gluon operator are only known to about an order of magnitude, and dimensional analysis does not tell us th 83

Higgs Portal CPV: EDMs & LHC

2017 Status

CPV & 2HDM: Type II illustration late that the late of λ_{67} = 0 for simplicity

EDM Complementarity

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources maqueuc systems: Two sources are resulting constraints on various under weaker than under the source. For example, from the limit on q ⇡ in Table I and the "reasonable

⇡ as well as on *C^T* . In contrast , the projected 100-fold improvement in ¹²⁹Xe (not octupole-deformed) would

⇡ bounds imply

⇡ *d*¯

have an impact primarily on *C^T* . In the last line of Table VIII, we optimistically consider the long term prospects with the neutron and 129Xe improvements and the octupole-deformed systems. The possibility of improvements to

TlF, for example with a cooled molecular beam μ and μ or another molecule will, of course, enhance the prospects.

on the ¯*g*

Paramagnetic Systems: Two Sources maqueuc systems: Two sources are resulting constraints on various under weaker than under the source. For example, from the limit on q ⇡ in Table I and the "reasonable

⇡ as well as on *C^T* . In contrast , the projected 100-fold improvement in ¹²⁹Xe (not octupole-deformed) would

⇡ bounds imply

⇡ *d*¯

have an impact primarily on *C^T* . In the last line of Table VIII, we optimistically consider the long term prospects with the neutron and 129Xe improvements and the octupole-deformed systems. The possibility of improvements to

TlF, for example with a cooled molecular beam μ and μ or another molecule will, of course, enhance the prospects.

on the ¯*g*

Illustrative Example: Leptoquark Model

89

Illustrative Example: Leptoquark Model

See also: Dekens et al 1809.09114

$$
\mathcal{L} \ni -\lambda_u^{ab} \bar{u}_R^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}_R^a X^{\dagger} Q^b + \text{h.c.}
$$

€

Illustrative Example: Leptoquark Model

See also: Dekens et al 1809.09114

$$
\mathcal{L} \ni -\lambda_u^{ab} \bar{u}_R^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}_R^a X^\dagger Q^b + \text{h.c.}
$$

€

Theoretical Challenges: EDMs

Matter Over Antimatter

Dark Energy

Sidebar 5.2: Matter over Antimatter

Why is there more matter than antimatter in the present universe?

This question is one of the most compelling in physics, and its answer is vital to explaining the fundamental origin, evolution, and structure of the nuclear matter that we observe today.

By many accounts, the fireball generated during the Big Bang was democratic: it contained the same number of electrons and quarks (matter) as positrons and antiquarks (antimatter). While it is possible that something gave the Big Bang a slight preference for more matter than antimatter, the subsequent period of cosmic inflation-a brief period of rapid spacetime expansion in the early universe-would have rendered that imbalance imperceptible today. What happened then, to tip the balance in favor of the matter that makes up nuclei, stars, and life itself?

Physicists do not yet have a definitive answer, but we do know the ingredients for one. According to physicist and Nobel Prize winner Andrei Sakharov, the forces in the early universe must have violated certain fundamental symmetries in ways not seen in the Standard Model. Fundamental symmetry tests in nuclear physics are looking for evidence of such violation, while nuclear theorists are working to relate the results of these tests to the matter-antimatter imbalance.

One of the most powerful probes is the experimental search for an as-yet unseen property of neutrons, protons, electrons, and atoms known as a permanent electric dipole moment, or EDM. As indicated in Figure 1, its discovery would indicate a violation of timereversal symmetry. In many candidates for the new Standard Model, this violation is intimately connected with the origin of the matter-antimatter imbalance. For example, new supersymmetric, time-reversal-violating interactions would have generated this imbalance about 0.000000001 seconds after the Big Bang, while leaving observable "footprints" today in the guise of permanent EDMs.

EDM searches

Figure 1: If an EDM is observed, then time-reversal transformation (T) is not a symmetry of nature: it takes a particle with EDM parallel to the spin and transforms it to the same particle with EDM anti-parallel to the spin-a different object that does not exist.

Another powerful probe is the search for the neutrinoless double beta decay of atomic nuclei (see Figure 2 and Sidebar 5.1). The observation of this nuclear decay would immediately imply that neutrinos are their own antiparticles and indicate a never-before-seen breakdown in the balance between leptons and their antiparticles. This symmetry violation would point to the existence of very heavy cousins of today's neutrinos whose decays in the early universe-possibly well before 10 picoseconds after the Big Bang-generated the excess of matter over antimatter.

Figure 2: Neutrinoless double beta involves the radioactive decay of a nucleus whereby two electrons are emitted without their usual antineutrino partners

Ingredients for Baryogenesis

- *B violation (sphalerons)*
- *C & CP violation*
- *Out-of-equilibrium or CPT violation*

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis…

Standard Model BSM ✓ ✖ ✖ ✓ ✓ ✓

Electroweak Baryogenesis

Was Y_B generated in conjunction with *electroweak symmetry-breaking?*

Fermion Masses & Baryon Asymmetry

EDM probes

Ingredients for Baryogenesis

CPV in EW Baryogenesis

PHYSICAL REVIEW D 71, 075010 (2005)

Resonant relaxation in electroweak baryogenesis

Christopher Lee,* Vincenzo Cirigliano,[†] and Michael J. Ramsey-Musolf[‡] California Institute of Technology. Pasadena. California 91125. USA

Yukawa Interactions and Supersymmetric Electroweak Baryogenesis

Daniel J. H. Chung,¹ Björn Garbrecht,¹ Michael J. Ramsey-Musolf,^{1,2} and Sean Tulin² ¹University of Wisconsin, Madison, Wisconsin 53706-1390, USA ²California Institute of Technology. Pasadena. California 91125. USA

PHYSICAL REVIEW D 81, 103503 (2010)

Flavored quantum Boltzmann equations

Vincenzo Cirigliano Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA

Christopher Lee Center for Theoretical Physics, University of California, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

Michael J. Ramsev-Musolf Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin, 53706, USA and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California, 91125, USA

Sean Tulin

ver, British Columbia, V6T 2A3, Canada ished 4 May 2010)

Electroweak baryogenesis

PRL 102, 0

David E Morrissey¹ and Michael J Ramsey-Musolf^{2,3}

¹ TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada ² Department of Physics, University of Wisconsin, Madison, WI 53705, USA ³ Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA E-mail: dmorri@triumf and mjrm@physics.wisc.edu

New Journal of Physics 14 (2012) 125003 (39pp) Received 19 May 2012 Published 4 December 2012 Online at http://www.njp.org doi:10.1088/1367-2630/14/12/125003

CPV in EW Baryogenesis: SUSY

Unbroken phase

MSSM: ~ 30 Coupled Boltzmann Eqns

Transport: A Competition R-M et al $\Gamma(A+B\rightarrow C)\neq \Gamma(\bar{A}+\bar{B}\rightarrow \bar{C})$ *CPV* $\Gamma(A+B \leftrightarrow C)$ *Chem Eq* $\Gamma(A + B \leftrightarrow A + B)$ Diffusion

EDMs & EWBG: MSSM & Beyond

 χ_a^+

 h^0,H^0

 $A.H^+$

Bino-driven electroweak baryogenesis with highly suppressed

Yingchuan Li^a, Stefano Profumo^{b,*}, Michael Ramsey-Musolf^{a,c}

electric dipole moments

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB viable but non-universal phases

 $,Z,W^+$

 χ_a^+

Li, Profumo, RM '*09-*'*10*

¹⁰⁰ **2010 Status**

EDMs: What We May Learn

EDM Theory: Challenges

Atomic & nuclear matrix elements

Hadronic matrix elements

Schiff moments & $\gamma\gamma$ *2013 Status*

Engel, R-M, van Kolck '13

Non-eq QFT & early univ CPV New results from LHC

Robust EWBG computations Interplay w/ hep BSM searches

2013 Status 2013 Status

102