Neutrinoless double beta decay in the in-medium GCM

Jiangming Yao

FRIB/NSCL, Michigan State University, East Lansing, Michigan 48824, USA

Collaborator: <u>B. Bally, R. Wirth</u>, J. Engel, H. Hergert, T.R.Rodríguez, ...

DBD-Collaboration Spring Meeting, May 28, 2020

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of 0 ν β β decay from the IM-GCM calculation	Summary and

Outline

1 Brief introduction

- 2 The in-medium generator coordinate method (GCM)
- 3 Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation
 - From ⁴⁸Ca to ⁴⁸Ti
 - From ⁷⁶Ge to ⁷⁶Se

4 Summary and outlook

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of 0 $\nu\beta\beta$ decay from the IM-GCM calculation	Summary and
•0			

Brief introduction

Candidate $0\nu\beta\beta$ decay in atomic nuclei

4/28

Experimental interest

- 1 Large $Q_{\beta\beta}$ value
- 2 Large isotopic abundance
- Low background in the energy region of interest

Nuclear matrix element and effective neutrino mass

The inverse of half-life of $0\nu\beta\beta$ (exchange light Majorana neutrino) can be factorized as

$$[T_{1/2}^{0\nu}]^{-1} = g_A^4 G_{0\nu} \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \right|^2 \left| M^{0\nu} \right|^2, \quad |\langle m_{\beta\beta} \rangle| = |\sum_{i=1,2,3} U_{ei}^2 m_i|$$

The candidate nuclei are mostly medium-mass open-shell (deformed) nuclei, challenge for *ab initio* methods.

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of 0 $\nu\beta\beta$ decay from the IM-GCM calculation	Summary and
	000000		

The in-medium generator coordinate method (GCM)

Brief introduction The in-medium generator coordinate method (GCM) Nuclear matrix elements of 0 v β β decay from the IM-GCM calculation Summary and

Generator coordinate method (GCM) in a nutshell

The trial wave function of a GCM state

$$|\Phi^{JNZ\cdots}\rangle = \sum_{Q} F_{Q}^{JNZ} \hat{P}^{J} \hat{P}^{N} \hat{P}^{Z} \cdots |\Phi_{Q}\rangle$$

 $|\Phi_{O}\rangle$ are a set of HFB wave functions with Q being the so-called generator coordinate (deformation, pairing, cranking...).

The mixing weight F_{O}^{JNZ} is determined from the Hill-Wheeler-Griffin equation:

$$\sum_{Q'} \left[H^{JNZ}(Q,Q') - E^J N^{JNZ}(Q,Q') \right] F_{Q'}^{JNZ} = 0$$

Features (pros) of GCM

- The Hilbert space in which the H will be diagonalized is defined by the Q. Many-body correlations are controlled by the Q
- The Q is chosen as (collective) degrees of freedom relevant to the physics.
- Dimension of the space in GCM is generally much smaller than full CI calculations.

When GCM meets chiral interactions, ...

- The GCM has been frequently implemented into nuclear DFT calculations.
- How to perform GCM calculations based on Hamiltonians derived from chiral effective field theory?
- We adopt a two-step scheme: IM-GCM (IM-SRG+GCM)

GCM vs IM-GCM based on nuclear chiral interactions

Ab initio many-body approaches for nuclear ground state

FRIB/MSU

The method: from the reference state to exact solution

Supposing $|\Psi^{JNZ}\rangle$ is the exact w.f. of (ground) state ($J^{\pi} = 0^+$), the energy of the state can be calculated as

$$\begin{array}{lll} E_0 & = & \langle \Psi^{JNZ} | H_0 | \Psi^{JNZ} \rangle \\ & = & \langle \Psi^{JNZ} | U^{\dagger}(s) U(s) H_0 U^{\dagger}(s) U(s) | \Psi^{JNZ} \rangle \\ & \equiv & \langle \Phi^{JNZ} | H(s) | \Phi^{JNZ} \rangle \end{array}$$

where s is an energy scale parameter, and U(s) is a unitary transformation

$$egin{array}{rcl} H(s) &=& U(s)H_0U^{\dagger}(s), \ |\Phi^{JNZ}
angle &=& U(s)|\Psi^{JNZ}
angle \end{array}$$

 $|\Phi^{JNZ}\rangle$ is the wave function of a pre-chosen reference state with less correlation than the ground state.

J.M.Yao

From a reference state to ground/excited state

The method: from the reference state to exact solution

Supposing the reference state $|\Phi^{JNZ}\rangle$ is not orthogonal to the exact w.f. , one has

$$|\Psi^{JNZ}
angle = U^{\dagger}(s_{\infty})|\Phi^{JNZ}
angle.$$

where the $U^{\dagger}(s_{\infty})$ should fulfill the following condition ($n \geq 1$):

$$\langle \Psi_{h_1\cdots h_n}^{p_1\cdots p_n}|H_0|\Psi\rangle=0, \quad \langle \Psi|H_0|\Psi_{h_1\cdots h_n}^{p_1\cdots p_n}
angle=0$$

which is equivalent to

$$\langle \Phi^{p_1'\cdots p_n'}_{h_1'\cdots h_n'}|H(s_\infty)|\Phi
angle=0, \quad \langle \Phi|H(s_\infty)|\Phi^{p_1'\cdots p_n'}_{h_1'\cdots h_n'}
angle=0$$

It indicates that one can get an exact solution of a given Hamiltonian H_0 at hard-energy scale by solving the Hamiltonian $H(s_{\infty})$ evolved down to a soft-energy scale starting from a properly-chosen reference state $|\Phi\rangle$.

IMSRG provides a tool of choice to derive the U(s).

The method: basic idea of IMSRG

A set of continuous unitary transformations onto the Hamiltonian

 $H(s) = U(s)H_0U^{\dagger}(s)$

Flow equation for the Hamiltonian

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

where the $\eta(s) = rac{dU(s)}{ds} U^{\dagger}(s)$ is the so-called generator chosen to decouple a given reference state from its excitations.

 Computation complexity scales polynomially with nuclear size

Tsukiyama, Bogner, and Schwenk (2011) Hergert, Bogner, Morris, Schwenk, Tsukiyama (2016)

Not necessary to construct the H matrix elements in many-body basis !

<u>Computation of NMEs of $0\nu\beta\beta$: challenges</u>

open-shell nuclei with collective correlations: mp-mh excitation configurations

$$|\Phi_1\rangle = \mathfrak{N} \cdot \exp\left\{\sum_{k < k'} Z_{kk'} \beta_k^+ \beta_{k'}^+\right\} |\Phi_0\rangle,$$

different unitary transformation for the initial and final nuclei: $U_l(s) \neq U_F(s)$. Computation of the following matrix element

$$M^{0\nu} = \langle \Phi_F | U_F(s) O^{0\nu} U_I^{\dagger}(s) | \Phi_I \rangle = \langle \Phi_F | e^{\Omega_F(s)} O^{0\nu} e^{-\Omega_I(s)} | \Phi_I \rangle$$

with truncation error controllable is challenge.

choose the reference state $|\Phi\rangle$ as an ensemble of the initial and final nuclei

- 64	w.	2	
 . IV	ю		

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary an
		000000000000	

Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation ••••••••	Summary and
From ⁴⁸ Ca to ⁴⁸ T			
⁴⁸ Ca- ⁴⁸ T	i: energies	, and the second se	

J.M.Yao

FRIB/MSU

- Spectra by GCM and NCSM based on the same interaction are consistent.
- Low-lying states are reasonably reproduced.
- Inclusion of cranking configurations in GCM calculation compresses the spectrum.

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary and
		000000000000000000000000000000000000000	
From ⁴⁸ Ca to ⁴⁸ T			

⁴⁸Ca-⁴⁸Ti: coordinate dependence of the NME

$$M^{0\nu} = \int dr_{12} \ C^{0\nu}(r_{12})$$

- The quadrupole deformation in ⁴⁸Ti changes both the short and long-range behaviors
- Neutron-proton isoscalar pairing is mainly a short-range effect

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary and
		000000000000	
From ⁴⁸ Ca to ⁴⁸ T			

⁴⁸Ca-⁴⁸Ti: *J*-component of the NME

IM-GCM vs IM-NCSM: eMax06

IM-GCM vs IM-NCSM: eMax08

- The value from Markov-chain Monte-Carlo extrapolation is $M^{0\nu} = 0.61^{+0.05}_{-0.04}$
- The neutron-proton isoscalar pairing fluctuation quenches ~17% further, which might be canceled out partially by the isovector pairing fluctuation.

JMY, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, H. Hergert, PRL (in press)

 Potential energy surface from the variation after particle-number projection (PNVAP) calculation

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation 000000000000000000000000000000000000	Summary and
From ⁷⁶ Ge to ⁷⁶ S	be		
Experim	ental results on ⁷⁶ Ge- ⁷⁶ S	e: triaxiality	

A. D. Ayangeakaa etal., PRL123, 102501 (2019)

⁷⁴Se
 ⁷⁴Se
 ⁷⁵Se
 ⁷⁵Se
 ⁸⁵Se
 ⁸⁵Se

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary and
		000000000000000	
From ⁷⁶ Ge to ⁷⁶ S	Se la		

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary
		000000000000000000000000000000000000000	
From 76 Ge to 76	20		

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary a
		000000000000000000000000000000000000000	
From ⁷⁶ Ge to ⁷⁶ S	Se		

J.M.Yao

FRIB/MSU

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary and			
		00000000000000000				
From ⁷⁶ Ge to ⁷⁶ Se						

Preliminary results on ⁷⁶Ge-⁷⁶Se: comparison with VS-IMSRG

The renormalization effect on ⁴⁸Ca is opposite to that on ⁷⁶Ge, which is consistent with our finding in IM-GCM calculation. (Please ask me why?)

Note: Figure with VS-IMSRG results is taken from A. Belley, R. Stroberg, J. D. Holt, etc

Brief introduction	The in-medium generator coordinate method (GCM)	Nuclear matrix elements of $0\nu\beta\beta$ decay from the IM-GCM calculation	Summary and
			••

Summary and outlook

Summary and outlook

Summary

- The nuclear matrix elements (NMEs) are required to determine the neutrino effective mass from $0\nu\beta\beta$ -decay experiments. Most of the candidate nuclei are medium-mass open-shell nuclei which are challenge for nuclear ab initio methods.
- We have developed a novel multi-reference framework of IM-GCM (IMSRG+GCM) which opens a door to modeling deformed nuclei with realistic nuclear forces.
- With the IM-GCM, we computed the NMEs for candidate process in medium-mass nuclei ⁴⁸Ca and ⁷⁶Ge(preliminary), which in both cases are smaller than the predictions by (most) phenomenological models. The IM-GCM results seem to be consistent with those from the valence-space IMSRG calculations.

Outlook

- Computation with a larger model space
- Uncertainty quantification, two-body transition currents, 3B operators, etc.
- More benchmarks against other ab initio calculations

