TeV Scale Lepton Number Violation: Leptogenesis, *0vββ* **Decay**, & the LHC

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst

My pronouns: he/him/his

Collaborators:

Julia Harz Sebastian U. Quiroga Tianyang Shen Peter Winslow Tao Peng T.U. Munich UMass Amherst PhD student UMass Amherst PhD student Former UMass Amherst post-doc Former UW Madison PhD student

Nuc Theory Topical Collab May 29, 2020

2006.NNNNN 1508.04444

Thanks

V. Cirigliano, J. de Vries, M. Graesser, W. Haxton, G. Li, E. Mereghetti, G. Prezeau, P. Vogel...

Outline

- TeV Scale LNV: Context
- Implications:
 - Cosmology
 - Nuclear Physics
 - High Energy Physics
- Outlook

Key Questions

- Is total lepton number (LN) conserved at the classical (Lagrangian) level?
- If LN is violated classically, what is the associated mass scale?
- If LNV exists at the TeV scale, what are the implications?

This talk

Implications

- Cosmology: Matter-Antimatter Asymmetry
- High Energy Physics: LHC searches
- Nuclear Physics: 0vββ Decay

Lepton Number: v Mass Term?

LNV Physics: Where Does it Live ?

Is the mass scale associated with m_v far above M_W ? Near M_W ? Well below M_W ?

The "Standard" Picture: High-Scale LNV

Neutrino Masses

"See saw mechanism" Physical state masses $m_1 \approx \frac{m_D^2}{M_N} ~\sim eV$ $m_2 \approx M_N ~\sim 10^{12} - 10^{15} \, {\rm GeV}$ New heavy neutrino-like particle = its own anti-particle

Neutrino Masses

Neutrinos and the Origin of Matter

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

Neutrinos and the Origin of Matter

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

TeV-Scale LNV ?

Implications

- Cosmology
- High Energy physics
- Nuclear Physics

Implications

- Cosmology
- High Energy physics
- Nuclear Physics

TeV LNV & Leptogenesis

Boltzmann: N_R & B-L

Basic equations: decays & inverse decays

$$\frac{dY_N}{dz} = -(D+S)\left(Y_N - Y_N^{\text{EQ}}\right)$$
$$\frac{dY_{B-L}}{dz} = -\epsilon D\left(Y_N - Y_N^{\text{EQ}}\right) - WY_{B-L}$$

Boltzmann: N_R & B-L

Basic equations: decays & inverse decays

Boltzmann: N_R & B-L

Basic equations: decays & inverse decays

$$\frac{dY_{N}}{dz} = -(D+S)\left(Y_{N}-Y_{N}^{EQ}\right)$$

$$\frac{dY_{B-L}}{dz} = -\epsilon D\left(Y_{N}-Y_{N}^{EQ}\right) - WY_{B-L}$$
CPV Decay
Asymmetry: source
Wash out: Inverse decays, $\Delta L = 1, 2$
processes...

Simplified Models: Illustrative Case

$$\mathcal{L}_{\rm INT} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \text{H.c.}$$

S:	(1, 2, 1/2)	
F:	(1, 0, 0)	Majorana

Similar ingredients as in scotogenic neutrino mass models (but no Z_2 symmetry)

Leptogenesis: Washout Processes

Thanks! S. Urrutia Quiroga

Thanks! S. Urrutia Quiroga

Results: Leptogenesis

TeV LNV & Leptogenesis

Implications

- Cosmology
- High Energy physics
- Nuclear Physics

TeV Scale LNV: *0νββ***-Decay & Colliders**

TeV Scale LNV: *0νββ***-Decay & Colliders**

TeV Scale LNV: *0νββ-Decay* & Colliders

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV Scale LNV

Can it be discovered with combination of $0\nu\beta\beta$ & LHC searches ?

Simplified models

Ονββ-Decay: TeV Scale LNV

Low energy: Nuclear Matrix Elements: Long Range Effects

Prezeau, R-M, Vogel '03 *

0vββ-Decay: Our Earlier Study

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

θvββ-Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Dirac
Majorana

Implications for m_{v} :

A hypothetical scenario

LHC Update: Signal & Background

	$g_L = 1.0, \ g_Q = 0.1$	$g_L = 0.1, \ g_Q = 1.0$
$\sigma(pp \rightarrow jje^+e^+) \text{ (pb)}$	9.701×10^{-3}	1.811×10^{-3}
$\sigma_{(b)}(pp \to S^+) \text{ (pb)}$	2.614×10^{-2}	2.614
$Br(S^+ \to e^+ F)$	9.494×10^{-1}	1.871×10^{-3}
$Br(F \to e^+ jj)$	0.5	0.5

(a) $\sqrt{s} = 14$ TeV, $m_F = 1$ TeV, and $m_S = 2$ TeV.

BKG type		σ before signal selection (pb)	σ after signal selection (pb)	σ after NN (pb)
	WW	3.28×10^{-3}	$6.40 imes10^{-4}$	6.87×10^{-5}
Diboson	WZ	2.59×10^{-2}	$6.65 imes 10^{-3}$	2.10×10^{-4}
	ZZ	1.32×10^{-3}	$5.62 imes 10^{-4}$	1.14×10^{-5}
Ict fako	W + 3j	1.79×10^{-1}	$4.34 imes10^{-2}$	1.78×10^{-4}
Jet-lake	$t\bar{t}$	9.11×10^{-2}	$2.64 imes 10^{-2}$	6.10×10^{-5}
Charge misidentification	$t\bar{t}$	$3.33 imes10^{-2}$	$1.54 imes10^{-2}$	$4.45 imes 10^{-4}$
	Z/γ^*	2.54×10^{-1}	1.37×10^{-1}	4.89×10^{-3}
		5.88×10^{-1}	$2.30 imes 10^{-1}$	5.86×10^{-3}

Results: *Ονββ* **Decay & LHC**

Results: LHC Cross Section

- Largest σ for $m_S > m_F$
- Off-shell S suppression for $m_F > m_S$

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Implications for m_{v} :

Schecter-Valle: non-vanishing Majorana mass at (multi) loop level Simplified model: possible (larger) one loop Majorana mass

Next Steps

- Analyze flavor effects:*
 - LHC: $pp \rightarrow \mu\mu$, $e\mu$, $\tau\tau$, ...; prompt vs DV
 - Flavored leptogenesis
 - Low-energy: $\mu \rightarrow e \gamma$, ...
- Other simplified models & UV completions

* J. Harz, S. Urrutia-Quiroga, J. Underland, G. Li, G. Cottin, MJRM

V. Outlook

- The observation of TeV scale LNV would have profound implications for our understanding of the origin of m_v & the cosmic baryon asymmetry
- There exists a rich interplay between 0vββ and collider searches
- Exciting opportunities ahead for exploring model realizations, flavor effects in the early universe, and connections to other experimental tests

