Weak processes in light nuclei

Saori Pastore Topical Collaboration Meeting Santa Fe NM - May 2020

> Washington University in St. Louis Arts & Sciences

Lorenzo Andreoli (PD) Garrett King (GS) Sam Brusilow (UG)

Collaborators: Piarulli (WashU) Carlson & Gandolf (LANL) Schiavilla (ODU+JLab) Wiringa (ANL) Baroni (USC) Girlanda (Salento U.) Marcucci & Viviani (Pisa U/INFN) Mereghetti & Dekens & Cirigliano & Graesser (LANL) de Vries (UMass-Amherst) van Kolck (AU+CNRS/IN2P3)

Resources: DOE-ALCC 0.39 MNH for "Low Energy Neutrino-Nucleus Interactions", SP et al. 2019

Towards a coherent and unified picture of lepton-nucleus interactions

* $\omega \sim$ few MeV, $q \sim 0$: EM-decay, β -decay, $\beta\beta$ -decay * $\omega \sim$ few MeV, $q \sim 10^2$ MeV: μ -capture, Neutrinoless $\beta\beta$ -decay * $\omega \lesssim$ tens MeV: Nuclear Rates for Astrophysics * $\omega \sim 10^2$ MeV: Accelerator neutrinos, *e*- and *v*-nucleus scattering

Neutrinos and Nuclei: Challenges and Opportunities

Gysbers et al. Nature Phys.15(2019)

Beta Decay Rate

Alvarez-Ruso arXiv:1012.3871

Neutrino-Nucleus Scattering

Nuclear Interactions

The nucleus is made of A non-relativistic interacting nucleons and its energy is

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD

Nuclear Interactions and Axial Currents

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

so far results are available with AV18+IL7 ($A \le 10$) and SNPA or chiral currents (*a.k.a.* hybrid calculations)

A. Baroni *et al.* PRC93(2016)015501
H. Krebs *et al.* Ann.Phy.378(2017)

- * c₃ and c₄ are taken them from Entem and Machleidt PRC68(2003)041001 & Phys.Rep.503(2011)1
- * *c_D* fitted to GT m.e. of tritium Baroni *et al.* PRC94(2016)024003
- * cutoffs $\Lambda = 500$ and 600 MeV
- include also N4LO 3b currents (tiny)

 * derived by Park et al. in the '90 used at tree-level in many calculations (Song-Ho, Kubodera, Gazit, Marcucci, Lazauskas, Navratil ...)
 * pion-pole at tree-level derived by Klos, Hoferichter et al. PLB(2015)B746

Single Beta Decay Matrix Elements in A = 6-10

gfmc (1b) and gfmc (1b+2b); shell model (1b)

SP et al. PRC97(2018)022501

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Based on $g_A \sim 1.27$ no quenching factor GT in ³H is fitted to expt - 2b give a 2% additive contribution to 1b prediction * similar results were obtained with MEC currents

* data from TUNL, Suzuki et al. PRC67(2003)044302, Chou et al. PRC47(1993)163

* In ¹⁰B, ΔE with same quantum numbers ~ 1.5 MeV * In A = 7, ΔE with same quantum numbers $\gtrsim 10$ MeV

Chiral calculations of beta decay m.e.'s: Nuclear Interaction

Nuclear Interactions and Axial Currents

we use Norfolk chiral 2– and 3–body interactions by Piarulli *et al.* and consistent axial currents up to N3LO (tree-level) by A. Baroni *et al.*

* *c*₃ and *c*₄ are taken them from Krebs *et al*. Eur.Phys.J.(2007)A32

* (c_D, c_E) fitted to:

1. trinucleon B.E. and *nd* doublet scattering length **NV2+3 models**

or 2. trinucleon B.E. and GT m.e. of tritium **NV2+3* models**

Fitting Strategies for (c_D, c_E)

Courtesy of M. Piarulli and the Pisa-group

Single Beta Decay Matrix Elements in A = 6-10

0.96 1	1.04	0.96 1	1.04	0.96	1 1.04	0.96	1 1.04
³ H β-decay		⁶ He β-decay		⁷ Be ε-cap(gs)		⁷ Be ε-cap(ex)	
0		•			•	0	
			•				•
 	•		•	\$	÷.	\$	÷
					1		1
⁸ Li β-decay		⁸ B β-decay		⁸ He β-decay		¹⁰ C β-decay	
0.		0.		0			•0
■ NV2+3-Ia NV2+3-Ia* AV18+IL7							()
						1.1	

NV2+3-Ia and NV2+3-Ia*; AV18+IL7 from SP et al. PRC97(2018)022501

1b (empty symbols) and 2b (full symbols) GFMC predictions

King et al. arXiv:2004.05263

* similar results were obtained with MEC currents

* data from TUNL, Suzuki et al. PRC67(2003)044302, Chou et al. PRC47(1993)163

Single Beta Decay Matrix Element Densities in chiEFT

King et al. arXiv:2004.05263

Some Numbers

	NV2+3-Ia	NV2+3-Ia*
c_D	3.666	-0.635
c_E	-1.638	-0.090
z_0	0.090	1.035

Contact current

$$\mathbf{j}_{5,a}^{\text{N3LO}}(\mathbf{q};\text{CT}) = \mathbf{z}_0 \, \mathbf{e}^{i \mathbf{q} \cdot \mathbf{R}_{ij}} \, \frac{\mathbf{e}^{-\tilde{\tau}_{ij}^2}}{\pi^{3/2}} \left(\boldsymbol{\tau}_i \times \boldsymbol{\tau}_j \right)_a \left(\boldsymbol{\sigma}_i \times \boldsymbol{\sigma}_j \right) \,,$$

and LECs

$$z_{0} = \frac{g_{A}}{2} \frac{m_{\pi}^{2}}{f_{\pi}^{2}} \frac{1}{(m_{\pi}R_{S})^{3}} \left[-\frac{m_{\pi}}{4g_{A}\Lambda_{\chi}}c_{D} + \frac{m_{\pi}}{3}(c_{3} + 2c_{4}) + \frac{m_{\pi}}{6m} \right],$$

$$c_{D}$$

Two-body transition densities: A = 3 - 10

King et al. arXiv:2004.05263

Two-body transition densities: Scaling

NV2+3-Ia empty circles – NV2+3-Ia* stars different colors refer to different transitions

King et al. arXiv:2004.05263

Neutrinoless Double Beta Decay

"The average momentum is about 100 MeV, a scale set by the average distance between the two decaying neutrons" cit. Engel&Menéndez

* Decay rate \propto (nuclear matrix elements) $^2 \times \langle m_{\beta\beta} \rangle^2$ *

F, GT, and T Transition Densities

F=
$$\tau_{1,+} \tau_{2,+}$$
; GT = $\tau_{1,+} \tau_{2,+} \sigma_1 \cdot \sigma_2$; T= $\tau_{1,+} \tau_{2,+} S_{12}$

Double beta-decay Matrix Elements

Momentum Dependence and Sensitivity to N2LO effects *i.e.*, 'dipole' nucleonic form factors and $v_v^{N2LO-loop}$

Peaks at ~ 200 MeV

- * Form factors on/off $\rightarrow \sim 10\%$ variation same size as $v_v^{N2LO-loop}$ from Cirigliano *et al.* arXiv:1710.01729
- * A = 10 highly suppressed w.r.t. A = 12 (clusterization matter?)
- * A = 12 'most similar' to experimental cases

Sensitivity to 'pion-exchange-like' correlations

* no 'pion-exchange-like' correlation operators Uii

- * yes 'pion-exchange-like' correlation operators Uij
- * ~ 10% increase in the matrix elements corresponds to a 'g_A-quenching' of ~ 0.95
- * as opposed to ~ 0.83 found in A = 10 single beta decay

* Correlations reduce the m.e.'s (also true for μ 's and GT's) *

Benchmark with Shell Model

Model dependence size's space p vs psd & H.O. vs W.S. wave functions

X. Wang et al. Phys. Lett. B 798 (2019) 134974

Summary and Outlook

Two-nucleon correlations and two-body electroweak currents are crucial to explain available experimental data of both static (ground state properties) and dynamical (cross sections and rates) nuclear observables

- * We validate the computational framework vs electromagnetic data
- * Two-body currents can give $\sim 30-40\%$ contributions and improve on theory/EXPT agreement
- * Calculations of β and $\beta\beta$ –decay m.e.'s in $A \le 12$ indicate two-body physics (currents and correlations) is required
- * Short-Time-Approximation to evaluate v-A scattering in A > 12 nuclei is in excellent agreement with exact calculations and data
 - * We are developing a coherent picture for lepton-nucleus interactions *