Advances in NN systems

Amy Nicholson UNC, Chapel Hill

Virtual DBD meeting, May 29, 2020

- What do we need to get nuclear physics from LQCD?
- Phase shifts required for infinite volume matching of MEs
- Must have full control over 2-body systems

- How do we project onto desired states?
- How do we disentangle signals from closely spaced energy levels?
- How do we beat the noise?

Methods for calculating few-body interactions from LQCD:

Spectroscopy + Lüscher Method

Yamazaki, et. al.

Hanlon et. al.

Spectroscopy + HOBET

Spectroscopy

Figures courtesy R. Briceno

Spectroscopy

$s_{R}=\left(E_{R}-\frac{i}{2} \Gamma_{R}\right)^{2}$
Figures courtesy R. Briceno

Spectroscopy

$$
\begin{gathered}
\left.\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \mathcal{O}| n\right\rangle\left.\right|^{2} e^{-E_{n} t} \\
\underset{t \rightarrow \infty}{\longrightarrow}\langle 0| \mathcal{O}\left|E_{0}\right\rangle\left\langle E_{0}\right| \mathcal{O}|0\rangle e^{-E_{0} t}
\end{gathered}
$$

Figures courtesy R. Briceno

Spectroscopy

- Finite volume energies simple to calculate from correlation functions at large Euclidean time:

$$
\begin{gathered}
\left.\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \mathcal{O}| n\right\rangle\left.\right|^{2} e^{-E_{n} t} \\
\overrightarrow{t \rightarrow \infty}\langle 0| \mathcal{O}\left|E_{0}\right\rangle\left\langle E_{0}\right| \mathcal{O}|0\rangle e^{-E_{0} t}
\end{gathered}
$$

Figures courtesy R. Briceno

Spectroscopy

- Finite volume energies simple to calculate from correlation functions at large Euclidean time:
- Bound states: infinite volume extrapolation gives binding energies

$$
\begin{gathered}
\left.\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \mathcal{O}| n\right\rangle\left.\right|^{2} e^{-E_{n} t} \\
\underset{t \rightarrow \infty}{\longrightarrow}\langle 0| \mathcal{O}\left|E_{0}\right\rangle\left\langle E_{0}\right| \mathcal{O}|0\rangle e^{-E_{0} t}
\end{gathered}
$$

Figures courtesy R. Briceno

Spectroscopy

- Finite volume energies simple to calculate from correlation functions at large Euclidean time:
- Bound states: infinite volume extrapolation gives binding energies
- Can't directly resolve resonances or scattering states

$s_{R}=\left(E_{R}-\frac{i}{2} \Gamma_{R}\right)^{2}$

$$
\begin{gathered}
\left.\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \mathcal{O}| n\right\rangle\left.\right|^{2} e^{-E_{n} t} \\
\underset{t \rightarrow \infty}{\longrightarrow}\langle 0| \mathcal{O}\left|E_{0}\right\rangle\left\langle E_{0}\right| \mathcal{O}|0\rangle e^{-E_{0} t}
\end{gathered}
$$

Figures courtesy R. Briceno

"Lüscher" in 1-d

"Lüscher" in 1-d

Quantization condition:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

"Lüscher" in 1-d

Quantization condition:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Lattice: measure energies at a given L

"Lüscher" in 1-d

Quantization condition:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

"Lüscher" in 1-d

Quantization condition:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

"Lüscher" in 1-d

D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards and C. E. Thomas, Phys. Rev. D 92, 094502 (2015)

Quantization condition:

Potential method

1. Create the following correlation function:

$C_{N N}(\mathbf{r}, t)$

Potential method

1. Create the following correlation function:

$\lim _{t \rightarrow \infty} C_{N N}(\mathbf{r}, t)=$

Potential method

1. Create the following correlation function:

$\lim _{t \rightarrow \infty} C_{N N}(\mathbf{r}, t)=\psi_{0}^{\dagger}$

Potential method

1. Create the following correlation function:

$\lim _{t \rightarrow \infty} C_{N N}(\mathbf{r}, t)=\psi_{0}^{\dagger} \times e^{-E_{0} t}$

Potential method

1. Create the following correlation function:

t

$\lim _{t \rightarrow \infty} C_{N N}(\mathbf{r}, t)=\psi_{0}^{\dagger} \times e^{-E_{0} t} \times \psi_{0}(\mathbf{r})$

Potential method

1. Create the following correlation function:

Potential method

2. Plug NBS wave-function into Schrödinger Eq. to determine the potential:

Potential method

Binding energies

Potential method

3. Use derivative expansion to determine the leading order potential:

$$
\begin{aligned}
U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) & =V_{C}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\mathcal{O}\left(\nabla_{\mathbf{r}}^{2} / \Lambda^{2}\right) \\
V_{C}(\mathbf{r}) & \simeq \frac{\mathbf{p}^{2}}{2 \mu}+\lim _{t \rightarrow \infty} \frac{1}{2 \mu} \frac{\nabla_{\mathbf{r}}^{2} C_{N N}(\mathbf{r}, t)}{C_{N N}(\mathbf{r}, t)}
\end{aligned}
$$

$$
\left[\frac{\mathbf{p}^{2}}{2 \mu}-H_{0}\right] \psi_{\mathbf{p}}(\mathbf{r})=\int d^{3} r^{\prime} U\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi_{\mathbf{p}}\left(\mathbf{r}^{\prime}\right) \longleftarrow \psi_{0}(\mathbf{r})
$$

Some comparisons

see Drischler, et al, 1910.0796I

$$
U\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=V_{C}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\mathcal{O}\left(\nabla_{\mathbf{r}}^{2} / \Lambda^{2}\right)
$$

Luscher

- discrete phase shifts
- need ground state saturation
- no volume extrapolation
- no uncontrolled approximations

Potential

- nearly continuous phase shifts
- only need elastic state saturation
- need volume extrapolation
- cutoff in gradient expansion

LQCD connection to HOBET

(K. McElvain and W. Haxton)

Formulate HOBET with the same (IR) BC as LQCD, fix (UV) couplings to reproduce LQCD energy levels, then remove the BC and make predictions

LQCD connection to HOBET

(K. McElvain and W. Haxton)

Formulate HOBET with the same (IR) BC as LQCD, fix (UV) couplings to reproduce LQCD energy levels, then remove the BC and make predictions

- No need to truncate partial wave expansion
- Can deal with volumes smaller than Compton wavelength of the pion
- Luscher formalism for $N>2$ is messy
- Alternate method for determining binding energies

Composite states at $\mathrm{m}_{\pi} \sim 800 \mathrm{MeV}$

- L=32
- $\mathrm{L}=24$

Cal ind

$$
\mathrm{p} \cot \delta=\mathrm{ip}
$$

Composite states at $\mathrm{m}_{\pi} \sim 800 \mathrm{MeV}$

- L=32
- L=24

$\mathrm{p} \cot \delta=\mathrm{ip}$

Composite states at $\mathrm{m}_{\pi} \sim 800 \mathrm{MeV}$

- L=32
- L=24

Composite states at $\mathrm{m}_{\pi} \sim 800 \mathrm{MeV}$

- L=32
- $\mathrm{L}=24$

$\mathrm{p} \cot \delta=\mathrm{ip}$
NNLO crossings

Composite states at $\mathrm{m}_{\pi} \sim 800 \mathrm{MeV}$

- L=32
- $\mathrm{L}=24$

$$
\mathrm{p} \cot \delta=\mathrm{ip}
$$

$\mathrm{p} \cot \delta=\mathrm{ip}$

NN Binding energies

T. Yamazaki, arXiv:1511.09179

NN Binding energies

T. Yamazaki, arXiv:1511.09179

NN Binding energies

T. Yamazaki, arXiv:1511.09179

Calculating the energies

Imaginary time $\left.C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle=\sum|\langle 0| \mathcal{O}| n\right\rangle\left.\right|^{2} e^{-E_{n} t}$ projection:

$$
\underset{t \rightarrow \infty}{\longrightarrow} Z_{0} e^{-E_{0} t}
$$

Effective mass plot:

$$
\begin{aligned}
M_{\mathrm{eff}} & \equiv \ln \frac{C(t)}{C(t+1)} \\
& \xrightarrow[t \rightarrow \infty]{\longrightarrow} E_{0}
\end{aligned}
$$

Nucleons: Signal-to-noise

Nucleons: Signal-to-noise

Trying to pull off tiny correction compared to large nucleon mass: $\Delta E=E_{N N}-2 E_{N}$

Trying to pull off tiny correction compared to large nucleon mass: $\Delta E=E_{N N}-2 E_{N}$

Trying to pull off tiny correction compared to large nucleon mass: $\Delta E=E_{N N}-2 E_{N}$

Excited state contamination

Elastic scattering
(2-body)
$\Delta \mathrm{E} \sim 50 \mathrm{MeV}$
(Luscher)

Excited state contamination

Elastic scattering

$$
\begin{gathered}
\text { (2-body) } \\
\Delta \mathrm{E} \sim 50 \mathrm{MeV} \\
\text { (Luscher) }
\end{gathered}
$$

Inelastic single body

$$
\Delta \mathrm{E} \sim \mathrm{~m}_{\pi}
$$
(HAL, Luscher)

Reducing elastic 2-body excited states

- Project onto non-interacting eigenstates of the box
- Very costly to perform exact momentum/angular momentum projection at both source \& sink (~V)
- Perform exact projection only at the sink

Reducing elastic 2-body excited states

- Project onto non-interacting eigenstates of the box
- Very costly to perform exact momentum/angular momentum projection at both source \& sink (\sim V)
- Source: need spatially displaced source operators to have overlap with $\ell>0$
- Even for s-wave, displaced
 sources are cleaner

Source: position space

Large displacements are necessary for maximal overlap with low-energy states

Excited state contributions to NN

Excited state contributions to NN

Long time behavior of NN correlator dominated by inelastic single nucleon excited state (problem for HAL method!)

Reducing single nucleon inelastic states: Matrix Prony (poor man's GEVP)

Single nucleon correlator

Reducing single nucleon inelastic states: Matrix Prony (poor man's GEVP)

Single nucleon correlator

Reducing single nucleon inelastic states: Matrix Prony (poor man's GEVP)

$$
\begin{gathered}
C_{0}\left(t+t_{0}\right)+\alpha C(t)=0 \\
\alpha=-e^{-E_{0} t_{0}} \\
E_{0}=-\frac{1}{t_{0}} \ln \frac{C\left(t+t_{0}\right)}{C(t)}
\end{gathered}
$$

Single nucleon correlator

Reducing single nucleon inelastic states: Matrix Prony (poor man's GEVP)
$M C\left(t+t_{0}\right)-V C(t)=0$

$$
C(t)=\sum_{n=1}^{N} \alpha_{n} u_{n} \lambda_{n}^{-t} \quad \lambda=e^{E_{n}}
$$

$$
M u=\lambda^{t_{0}} V u
$$

$$
M=\left[\sum_{\tau=t}^{t+t_{W}} C\left(\tau+t_{0}\right) C(\tau)^{T}\right]^{-1} \quad V=\left[\sum_{\tau=t}^{t+t_{W}} C(\tau) C(\tau)^{T}\right]^{-1}
$$

Single nucleon correlator

Reducing single nucleon inelastic states: Matrix Prony (poor man's GEVP)
$M C\left(t+t_{0}\right)-V C(t)=0$

$$
C(t)=\sum_{n=1}^{N} \alpha_{n} u_{n} \lambda_{n}^{-t} \quad \lambda=e^{E_{n}}
$$

$$
M u=\lambda^{t_{0}} V u
$$

$$
M=\left[\sum_{\tau=t}^{t+t_{W}} C\left(\tau+t_{0}\right) C(\tau)^{T}\right]^{-1} \quad V=\left[\sum_{\tau=t}^{t+w_{W}} C(\tau) C(\tau)^{T}\right]^{-1}
$$

Single nucleon correlator

Reducing single nucleon inelastic states: Matrix Prony (poor man's GEVP)
$M C\left(t+t_{0}\right)-V C(t)=0$

$$
C(t)=\sum_{n=1}^{N} \alpha_{n} u_{n} \lambda_{n}^{-t} \quad \lambda=e^{E_{n}}
$$

$$
M u=\lambda^{t_{0}} V u
$$

$$
M=\left[\sum_{\tau=t}^{t+t_{W}} C\left(\tau+t_{0}\right) C(\tau)^{T}\right]^{-1} \quad V=\left[\sum_{\tau=t}^{t+t_{W}} C(\tau) C(\tau)^{T}\right]^{-1}
$$

Single nucleon correlator
remove elastic states

$$
N N: T_{1}^{+}:{ }^{3} S_{1}: p_{\text {rel }}^{2}=0\left(\frac{2 \pi}{L}\right)^{2}
$$

CalLat (2017)

MP method for NN

- NPLQCD first used MP directly on NN correlators
- Works best as a two-step process: determine single-nucleon op, then minimize two-body elastic excited states
- Prony often doesn't work well for more than 2 ops:
- excited states extracted are unreliable
- may be able to do two stages of Prony to further reduce elastic excited states

The future?
 GEVP approaches

Variational basis of interpolating operators: $O_{i}\left(x_{0}\right)$
Define the states: $\quad\left|\tilde{\phi}_{i}\right\rangle=\hat{O}_{i}|0\rangle \quad$ and $\quad\left|\phi_{i}\right\rangle=\mathrm{e}^{-t_{0} \hat{H} / 2}\left|\tilde{\phi}_{i}\right\rangle$

The future?
 GEVP approaches

Variational basis of interpolating operators: $O_{i}\left(x_{0}\right)$
Define the states: $\quad\left|\tilde{\phi}_{i}\right\rangle=\hat{O}_{i}|0\rangle \quad$ and $\quad\left|\phi_{i}\right\rangle=\mathrm{e}^{-t_{0} \hat{H} / 2}\left|\tilde{\phi}_{i}\right\rangle$
Variational principle ($\mathrm{t}>\mathrm{t}_{0}$):

$$
\lambda_{1}\left(t, t_{0}\right)=\operatorname{Max}_{\left\{\alpha_{i}\right\}} \frac{\langle\phi| \mathrm{e}^{-\left(t-t_{0}\right) \hat{H}}|\phi\rangle}{\langle\phi \mid \phi\rangle}, \quad|\phi\rangle=\sum_{i=1}^{N} \alpha_{i}\left|\phi_{i}\right\rangle
$$

Eigenvalue: $\lambda_{1}\left(t, t_{0}\right) \approx \mathrm{e}^{-E_{1}\left(t-t_{0}\right)}$

The future?
 GEVP approaches

Variational basis of interpolating operators: $O_{i}\left(x_{0}\right)$
Define the states: $\quad\left|\tilde{\phi}_{i}\right\rangle=\hat{O}_{i}|0\rangle \quad$ and $\quad\left|\phi_{i}\right\rangle=\mathrm{e}^{-t_{0} \hat{H} / 2}\left|\tilde{\phi}_{i}\right\rangle$
Variational principle ($\mathrm{t}>\mathrm{t}_{0}$):

$$
\lambda_{1}\left(t, t_{0}\right)=\operatorname{Max}_{\left\{\alpha_{i}\right\}} \frac{\langle\phi| \mathrm{e}^{-\left(t-t_{0}\right) \hat{H}}|\phi\rangle}{\langle\phi \mid \phi\rangle}, \quad|\phi\rangle=\sum_{i=1}^{N} \alpha_{i}\left|\phi_{i}\right\rangle
$$

Eigenvalue: $\lambda_{1}\left(t, t_{0}\right) \approx \mathrm{e}^{-E_{1}\left(t-t_{0}\right)}$

Largest eigenvalue of a GEVP, which can be used to determine multiple states:

$$
c_{i j}(t)=\left\langle\hat{o}_{i}(t) \hat{O}_{j}^{\dagger}(0)\right\rangle
$$

$$
C(t) v_{n}\left(t, t_{0}\right)=\lambda_{n}\left(t, t_{0}\right) C\left(t_{0}\right) v_{n}\left(t, t_{0}\right)
$$

$$
n=1, \ldots, N
$$

The future? GEVP approaches

The future? GEVP approaches

Andersen, Bulava, Horz, Morningstar (2018)

The future? GEVP approaches

Andersen, Bulava, Horz, Morningstar (2018)

The future? GEVP approaches NN?

The future? GEVP approaches NN ?

- Why is GEVP so much more expensive?

The future? GEVP approaches N N?

- Why is GEVP so much more expensive?
- Generally requires large basis of operators properly spanning the low-lying eigenstates

The future? GEVP approaches NN?

- Why is GEVP so much more expensive?
- Generally requires large basis of operators properly spanning the low-lying eigenstates
- Omission of a given operator type (e.g. local operators for channels containing a bound state or resonance) can give distorted energy levels

The future? GEVP approaches NN?

- Why is GEVP so much more expensive?
- Generally requires large basis of operators properly spanning the low-lying eigenstates
- Omission of a given operator type (e.g. local operators for channels containing a bound state or resonance) can give distorted energy levels
- Requires symmetric matrix of correlation functions

The future? GEVP approaches NN?

- Why is GEVP so much more expensive?
- Generally requires large basis of operators properly spanning the low-lying eigenstates
- Omission of a given operator type (e.g. local operators for channels containing a bound state or resonance) can give distorted energy levels
- Requires symmetric matrix of correlation functions
- Positive definite = no fake plateaus!

The future? GEVP approaches NN?

- Why is GEVP so much more expensive?
- Generally requires large basis of operators properly spanning the low-lying eigenstates
- Omission of a given operator type (e.g. local operators for channels containing a bound state or resonance) can give distorted energy levels
- Requires symmetric matrix of correlation functions
- Positive definite = no fake plateaus!
- Momentum $->$ momentum: cost $\mathrm{O}(\mathrm{V})$

The future?
 GEVP approaches NN?

- Why is GEVP so much more expensive?
- Generally requires large basis of operators properly spanning the low-lying eigenstates
- Omission of a given operator type (e.g. local operators for channels containing a bound state or resonance) can give distorted energy levels
- Requires symmetric matrix of correlation functions
- Positive definite = no fake plateaus!
- Momentum $->$ momentum: cost $\mathrm{O}(\mathrm{V})$
- sLapH stochastically projects onto low momentum states, easing this scaling with V

NN scattering with sLapH

Fully resolving this puzzle likely requires GEVP including both momentum space and local ops

We are currently performing a comparison of methods (HAL potential, Luscher using both MP and sLapH) on same ensembles at 800 MeV

Other progress

- Nucleon axial form factors
- Feynman-Hellmann method for computing 4-quark MEs

- Charm content of the nucleon (DM MEs) $\langle N| \bar{c} c|N\rangle$

- RIKEN/LBL: C.C. Chang
- RIKEN: E. Rinaldi
- NERSC: T. Kurth
- nVidia: M.A. Clark
- LBL/UCB: A. Walker-Loud, B. Hörz
- Glasgow: C. Bouchard
- LLNL: P. Vranas, D. Howarth
- Carnegie Mellon: C. Morningstar
- SDSU: J. Bulava, C. Andersen
- UMD: E. Berkowitz
- Mainz: A. Hanlon
- UNC: H. Monge-Camacho, AN

