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FIG. 3. Calculated 0νββ NMEs, compared to the values given by
SM (denoted by “ISM-CMU”) [9,10], EDF-based GCM employed
non-relativistic Gogny D1S force (denoted by “NREDF”) [29] and
relativistic PC-PK1 force (denoted by “REDF”) [30].

PC-PK1 force. It can be seen that previous GCM calculations
produce NMEs which are more than two times larger than
the SM ones. In contrast, with our Hamiltonian-based GCM
calculations we obtain NMEs that are about only 30% larger
than the SM results, significantly reducing the long-debated
discrepancy between previous GCM and SM predictions.

To further understand this 30% overestimation given by our
GCM calculations, the values for the 0νββ decay NMEs of
124Sn, 130Te, and 136Xe are listed in Table III, where we show
the Gamow-Teller, the Fermi, and the tensor contributions.
Generally, the Fermi and tensor parts of NMEs present good
agreement between our GCM calculations and SM calcula-
tions, while the Gamow-Teller part of NMEs are noticeably
larger in our GCM results, resulting in the 30% overestimation
in the total 0νββ NMEs.

The analysis of the 0νββ NME is extended by looking at
the decomposition of the NMEs over the angular momentum
I of the proton (or neutron) pairs (see Eq. (B4) in Ref. [52]),
called I -pair decomposition. In this case, the NME can be

TABLE III. The NMEs obtained with SVD Hamiltonian by using
GCM and SM for 124Sn, 130Te, and 136Xe. The SM results are taken
from Refs. [9,10]. CD-Bonn SRC parametrization was used.

M0ν
GT M0ν

F M0ν
T M0ν

124Sn GCM 2.48 −0.51 −0.03 2.76
SM 1.85 −0.47 −0.01 2.15

130Te GCM 2.25 −0.47 −0.02 2.52
SM 1.66 −0.44 −0.01 1.94

136Xe GCM 2.17 −0.32 −0.02 2.35
SM 1.50 −0.40 −0.01 1.76

FIG. 4. I -pair decomposition: contributions to the Gamow-Teller
matrix elements for the 0νββ decay of 124Sn, 130Te, and 136Xe from
the configurations when two initial neutrons and two final protons
have a certain total spin I , compared to SM [9,10] calculations. CD-
Bonn SRC parametrization was used.

written as Mα =
∑

I Mα (I ), where Mα (I ) represent the con-
tributions from each pair-spin I to the α part of the NME.
To analyze the deviation between the M0ν

GT given by GCM
and SM, Fig. 4 presents the I -pair decomposition for the
Gamow-Teller part of our calculated 0νββ NMEs, compared
to the one calculated by SM [9,10]. The bars in Figs. 4 can
be added directly to get the Gamow-Teller part of NMEs.
As we can see, the dramatic cancellation between the I = 0
and I = 2 contributions shown by the SM calculations is
reproduced perfectly by our GCM approach. However, SM
calculations give more negative contributions with I ! 4,
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FIG. 5. The differences of Gamow-Teller part of NMEs between
our GCM and SM calculations against the pair-spin I for 124Sn,
130Te, and 136Xe.

which further reduce the Gamow-Teller NMEs. In contrast,
our GCM approach can barely produce any contributions with
I ! 4.

Figure 5 visualizes the differences in Gamow-Teller NMEs
between our GCM and SM calculations against the pair-spin
I , which can help us to identify where the differences mainly
come from. If we only include the I " 2 contributions, the
Gamow-Teller NMEs obtained by our GCM approach are
very close to the ones given by SM in all three nuclei involved.
However, if the I " 4 contribution are taken into account,
the differences are noticeably increased to about 0.45 for all
the candidate nuclei. The inclusion of all possible pair-spin I
contributions would increase these differences even further.
Apparently, the overestimation of Gamow-Teller NMEs is
associated with those large-I -pair contributions, which may
correspond to collective or noncollective correlations that are
excluded from current GCM calculations.

Therefore, the deviation between our current Hamiltonian-
based GCM and SM results may be related to the lack of
some correlations, which become important in 124Sn, 124Te,
130Te, 130Xe, 136Xe, and 136Ba. Since these nuclei are all
near spherical or weakly deformed, one can expect that the
noncollective correlations, for example, quasiparticle excita-
tions, may overcome the collective correlations. Currently,
the reference states that the GCM method employs are HFB
states imposed by the time-reversal symmetry, which exclude
any multi-quasiparticle configurations. It would be of great
interest if we could treat the quasiparticle excitation as an
additional generator coordinate in the future. It could improve
the description of 0νββ decay NME for these nuclei.

IV. SUMMARY

In this paper, we present a GCM calculation based on
effective shell model Hamiltonians for the 0νββ decay NMEs
of 124Sn, 130Te, and 136Xe in the jj55 model space that
compromises the 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 orbitals.
We use the SVD effective Hamiltonian that was fine-tuned to
describe the experimental data. To ensure the reliability of the
results, we perform the Hamiltonian-based GCM calculations
of the ground-state energies, low-lying level spectra, and
occupancies of valence neutron and proton orbitals. These
are compared with the SM results obtained by exactly diag-
onalizing the same effective Hamiltonian. Our results are in
reasonable agreement with the values obtained with the shell
model. We also provide a detailed analysis of 0νββ decay
NMEs for 124Sn, 130Te, and 136Xe. Our Hamiltonian-based
GCM produces 0νββ decay NMEs that are about 30% larger
than the ones obtained by SM, significantly reducing the large
deviation between previous GCM and SM predictions. By
checking the decomposition of the NMEs over the angular
momentum I of the proton or neutron pairs, we find that
the remaining 30% overestimation of 0νββ decay NMEs
may be associated with the exclusion of some noncollective
correlations.

Furthermore, the validation of Hamiltonian-based GCM
calculation for 124Sn, 130Te, and 136Xe opens the possibility
to study the 0νββ NME of 150Nd with realistic effective
interactions, by including the most important correlations.
For 150Nd and 150Sm, a larger valence space (e.g., the shell
closures from N = Z = 50 to 126) is required. However,
the number of states for A = 150 nuclei in this space is too
large for exact diagonalization in the conventional SM. In
contrast, the Hamiltonian-based GCM can be easily extended
to this model space. There are at least two ways to obtain a
reasonable effective Hamiltonian in this larger model space:
(i) build a separable collective Hamiltonian including the
monopole term, pairing term, quadrupole-quadrupole term,
and spin-isospin term, following the work of Dufour and
Zuker [53]; (ii) perhaps more difficult, but more important,
is an implementation of valence-space Hamiltonians derived
from ab initio approaches, such as in-medium similarity
renormalization group (IM-SRG) [54] or coupled cluster (CC)
[55] methods. Recent work [56] has extended the reach of
valence-space IM-SRG in one single shell to essentially all
light- and medium-mass nuclei. The extension of the ab initio
valence-space Hamiltonian in multiple shells by using our
GCM approach would be a desirable next step.
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TABLE I. The Q0⌫
�� values in MeV, the experimental T 0⌫

1/2 limits in years, and the calculated PSF (G01 � G09) in years�1 for
all five isotopes currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Q0⌫
�� [53] 4.272 2.039 2.995 2.813 2.287

T 0⌫
1/2 > 2.0 · 1022[54] 5.3 · 1025[55] 2.5 · 1023[56] 4.0 · 1024[57] 1.1 · 1026[58]

G01 · 10
14 2.45 0.22 1.00 1.41 1.45

G02 · 10
14 15.4 0.35 3.21 3.24 3.15

G03 · 10
15 18.2 1.20 6.50 8.46 8.55

G04 · 10
15 5.04 0.42 1.92 2.53 2.58

G05 · 10
13 3.28 0.60 2.16 4.12 4.36

G06 · 10
12 3.87 0.50 1.65 2.16 2.21

G07 · 10
10 2.85 0.28 1.20 1.75 1.80

G08 · 10
11 1.31 0.17 0.82 1.72 1.83

G09 · 10
10 15.5 1.12 4.42 4.47 4.44

TABLE II. The NME that appear in Eq. (1) for the five
nuclei of current experimental interest, and the corresponding
LNV parameters extracted under the assumption that only
one dominates.

48Ca 76Ge 82Se 130Te 136Xe

M0⌫ 1.03 3.64 3.42 1.93 1.75

M0N 75.5 202 187 136 143

Mq̃ 107 339 320 185 169

M�0 370 619 570 415 366

X� 2.11 4.13 5.69 2.81 2.48

X⌘ 246 794 725 517 467

106·|⌘0⌫ | 27.5 0.50 3.70 1.37 0.28

109·|⌘0N | 376.5 8.97 67.5 19.5 3.49

109·|⌘q̃| 264 5.35 39.4 14.3 2.96

109·|⌘�0 | 76.9 2.92 22.1 6.39 1.36

107·|⌘�| 135 4.39 22.2 9.42 2.01

109·|⌘⌘| 115 2.28 17.4 5.13 1.07

[52]multiplied by MGT /G01 to fit the factorization of Eq.
(1). All NME used in this paper were calculated using the
interacting shell model (ISM) approach[27–30, 33, 48, 70]
(see Ref. [33] for a review), and include short-range-
correlation e↵ects based on the CD-Bonn parametriza-
tion [26], finite-size e↵ects [68] and, when appropriate,
optimal closure energies [50] (see Appendix for more de-
tails).
The upper limits for corresponding LNV parameters

extracted from lower limits of the half-lives under the as-
sumption that only one term in the amplitude dominates,
are also presented in Table II.

III. EFFECTIVE FIELD THEORY APPROACH
TO NEUTRINOLESS DOUBLE-BETA DECAY

A more general approach is based on the e↵ective
field theory extension of the Standard Model. The anal-
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

ysis based on the BSM contributions to the e↵ective
field theory is more desirable, because it does not rely
on specific models, and their parameters could be ex-
tracted/constrained by the existing 0⌫�� data, and by
data from LHC and other experiments. In fact, the mod-
els considered in section II always lead to a subset of
terms in the low-energy (⇠ 200 MeV) e↵ective field the-
ory Lagrangian. Here we consider all the terms in the
Lagrangian allowed by the symmetries. Some of the cou-
plings will correspond to the model couplings in Eq. (1),
but they might have a wider meaning. Others are new,
not corresponding to specific models.
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long-range diagram.
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(f) The one-pion long-range
diagram.
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(g) The two-pion long-range
diagram.

FIG. 2. Similar to Fig.1, we present the nucleon-level diagrams of 0⌫�� decay process : (2a) presents the generic description
of the process, (2b) shows the light left-handed neutrino exchange, (2c) is the long-range component, Subfigure 2d shows the
short-range contribution. On the second line, (2e) is the pion-neutrino component, (2f) is the one-pion long-range contribution
of the⇢Rp SUSY induced 0⌫�� diagram, and (2g presents the two-pion long-range contribution of the⇢Rp SUSY induced 0⌫��.
The e↵ective couplings ⌘1⇡ and ⌘2⇡ are related to Eq. (16) as ⌘1⇡ = c1⇡⌘⇡N and ⌘2⇡ = c2⇡⌘⇡N .

In that restrictive case we showed that one can disen-
tangle di↵erent contributions to the 0⌫�� decay process
using two-electron angular and energy distributions as
well as half-lives of two selected isotopes. Obviously, this
number of observables is not enough to extract all cou-
pling appearing in the e↵ective field theory Lagrangian.
However, they can be used to constrain these couplings,
thus adding to the information extracted from the Large
Hadron Collider and other related experiments. Here we
attempt to extract these couplings assuming that only
one of them can have a dominant contribution to the
half-life, Eq. (5). We call this approach “on-axis“. Con-
sidering the “on-axis“ approach to extracting limits of the
LNV parameters, the interference terms are neglected in
our analysis. In the following, we extract the “on-axis“
upper limits of these parameters using the most recent
experimental the half-lives lower limits, as presented in
Table I.

IV. EXPERIMENTAL LIMITS ON THE BSM
LNV COUPLINGS

To obtain experimentally constrained upper limits of
the e↵ective LNV couplings one needs experimental half-

life lower limits, accurate calculations of the PSF, to-
gether with reliable NME results calculated using nu-
clear structure methods tested to correctly describe the
experimental nuclear structure data available for the nu-
clei involved. We split our analysis of the LNV parame-
ters into three subsections corresponding the exchange of
light left-handed Majorana neutrinos, the LNV couplings
entering the remaining quark-level long-range diagrams,
and the LNV couplings entering the quark-level short-
range diagrams.

A. The exchange of light left-handed neutrinos

Most studies in the literature have only considered the
case where only the exchange of light left-handed Ma-
jorana neutrinos contribute to the 0⌫�� decay process,
presented in Figs. 1b and 2b. Therefore, one can easily
find calculations of NME and PSF for this scenario. Con-
sidering only this case, we reduce the half-life equation
to:

h
T

0⌫
1/2

i�1
= g

4
A |⌘0⌫ |

2
M

2
0⌫ , (6)

where gA = 1.27, M2
0⌫ contains the NME and the PFS

(see Eq. (8) below). ⌘0⌫ = hm��i
me

, where me is the elec-
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
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exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L

(2)
6 ) =

G
2
F

2
T

h
jV�AJ

†
V�AjV�AJ

†
V�A

+ ✏
�
↵j�J

†
↵jV�AJ

†
V�A + ✏

�
↵✏

�
�j�J

†
↵j�J

†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T

0⌫
1/2

i�1
=g

4
A

2

4
X

i

|Ei|
2
M

2
i +Re

2

4
X

i 6=j

EiEjMij

3

5

3

5 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.

3

0νββ
eL R

−

u

u

d

d

eL R
−

(a) The generic 0⌫�� decay
diagram at the quark-level.

=

d

d

u

u

eL
−

ν

W L

W L
eL

−

(b) Light left-handed neutrino
exchange diagram.

+

d

d

u

u

ν

W L

ϵ

eL R
−

eL
−

(c) The long-range part of the
0⌫�� diagram.

+

eL/ R
−

u

u

d

d

eL/ R
−

ε

(d) The short-range part of
the 0⌫�� diagram.

FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.
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man diagrams in Figure 1. We consider contributions
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four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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V+A
V�A, ✏
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TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and
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LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them
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LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
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3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏
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E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
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hadronic and the leptonic currents involved, with xyz =
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scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
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denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M
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i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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representative examples that mediate 0νββ decay via stan-
dard or nonstandard light neutrino exchange, or via short-
range interactions at tree level.

II. NEUTRINOLESS DOUBLE BETA DECAY

The most prominent probe of low energy LNV is 0νββ
decay, the simultaneous transition of two neutrons into two
protons and two electrons. The most general Lagrangian
triggering the decay can be parametrized as depicted in
Fig. 1, in terms of effective 6-dim and 9-dim operators at
the nuclear Fermi scale Oð100 MeVÞ [7]. The diagrams
show the exchange of a light Majorana neutrino generated
by O5 between two SM Fermi interactions (a), the
exchange of a light neutrino between a Fermi interaction
and the operator O7 (b), and two short-range contributions
triggered by the operators O9 (c) and O11 (d).
The 0νββ half-life can be succinctly written in terms of

an effective coupling ϵi of a single operator as T−1
1=2 ¼

ϵ2i GijMij2, where Gi and Mi are the nuclear 0νββ phase
space factor and matrix element, respectively, for a given
isotope and operator. The effective couplings ϵi are con-
nected to the scales of the operators in Eq. (2) as [8]

meϵ5 ¼
g2v2

Λ5

;
GFϵ7ffiffiffi

2
p ¼ g3v

2Λ3
7

;

G2
Fϵf9;11g
2mp

¼
"
g4

Λ5
9

;
g6v2

Λ7
11

#
: ð3Þ

In terms of the effective 0νββ mass mee, one simply has
ϵ5 ¼ mee=me with the electron mass me, whereas the other
couplings are normalized with respect to the Fermi cou-
pling GF and the proton mass mp. The Higgs vacuum
expectation value v ¼ 174 GeV arises from EW symmetry
breaking thereby generating the effective 6-dim and 9-dim

operators for 0νββ. Powers of a generic (average) coupling
constant g are included to illustrate the scaling expected in
a tree level ultraviolet (UV) completion of an operator.
In the following we will set g ¼ 1 for simplicity.
The most stringent bounds are currently derived from

experimental 0νββ searches in 76Ge and 136Xe with
90% C.L. limits of T1=2 > 2.1 × 1025 y [9] and T0

1=2 >
ð1.1 − 1.9Þ × 1025 y [10,11], respectively. In deriving the
corresponding scales of the operators we use the results of
[8] for 76Ge. Planned future experiments aim to increase the
sensitivity by potentially 2 orders of magnitude to T1=2 ≈
1027 y [12]. Assuming the dominance of a single operator,
the half-life can be expressed as

T1=2 ¼ 2.1 × 1025 y · ðΛD=Λ0
DÞ2d−8; ð4Þ

where Λ0
D is the scale corresponding to the current

sensitivity. Table I lists the values of Λ0
D for our selection

of operators. The scaling dimension d is identical to the
operator dimensionD if 0νββ is generated at tree level from
the underlying operator, as in the cases we discuss, but
could be smaller for loop-induced diagrams. As mentioned
before, the operators in Eq. (2) act as examples for the
different types of 0νββ decay mediation. Similar results
hold for the other 125 operators and other Lorentz
structures. The latter will affect the 0νββ sensitivity some-
what, but due to the high dimensionality of the operators
this will only weakly impact the derived scales. Many of the
129 operators will induce 0νββ nonstandard mechanisms
only at the loop level; in such cases, there will be additional
loop suppression factors in the relations analogous to
Eq. (3). This will make it unlikely that such contributions
can be observed in 0νββ decay, but if they were, our
following argumentation with respect to baryogenesis
would be even stronger.
If 0νββ decay was observed, the responsible operator

would still be unknown. Although discriminating between
the different underlying operators is a challenging task,
various ideas have been proposed how this could be
achieved, at least for a subset of the various contributions.
Cosmological observations such as anisotropies of the
cosmic microwave background or the large scale structure
can set stringent constraints on the sum of neutrino masses;
the Planck Collaboration, for example, recently attainedP

mν < 0.17 [1], which can be further improved by future

(a) (b)

(c) (d)

FIG. 1 (color online). Contributions to 0νββ decay generated by
the operators O5 (a), O7 (b), O9 (c) and O11 (d), as given in
Eq. (2), in terms of effective vertices, pointlike at the nuclear
Fermi momentum scale.

TABLE I. Operator scale Λ0
D and minimal washout scale λ0D for

the LNV operators in Eq. (2) and the current 0νββ sensitivity
T1=2 ¼ 2.1 × 1025 y.

OD λ0D [GeV] Λ0
D [GeV]

O5 9.2 × 1010 9.1 × 1013

O7 1.2 × 102 2.6 × 104

O9 4.3 × 101 2.1 × 103

O11 7.8 × 101 1.0 × 103
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TABLE VI. The M
2
↵ values for the short-range physics.

48Ca 76Ge 82Se 130Te 136Xe

1013·M2
1 1.08 0.75 2.81 1.98 1.63

108· M2
2 0.77 0.55 2.07 1.51 1.25

1010·M2
3LLz(RRz) 1.12 0.80 2.99 2.17 1.79

1011·M2
3LRz(RLz) 6.00 4.31 16.1 11.8 9.73

1010·M2
4 1.02 0.76 2.72 1.93 1.59

1013·M2
5 4.71 3.44 12.3 8.44 7.02

109· M2
⇡N 3.26 0.87 3.24 2.47 1.94

M
2
4 = G09

(meR)2

8

"
T

(3)
1

gA
MGTN

#2

, (14e)

M
2
5 = G09

(meR)2

8

"
F

(3)
S gV

g
2
A

MFN

#2

. (14f)

The parameters F
(3)
S = 0.48 and T

(3)
1 = 1.38 are taken

form Ref. [75]. The values of these M2
↵� are presented in

Table VI. Detailed expressions for MGTN and MFN are
presented in the Appendix, and their shell model values
are shown in Table XI.

Considering the 0⌫�� amplitudes displayed in Figs. 2f
and 2g in the one-pion and two-pion exchange modes it
is possible to get alternative limits for "1 and "2 consid-
ering a di↵erent NME, M⇡N . The analysis of Ref. [68]
suggests these alternative values, here denoted by "̃1 and
"̃2, can be obtained as "̃1 = 64

16⌘⇡N , and "̃2 = 2
3⌘⇡N , using

h
T

0⌫
1/2

i�1
= g

4
A

h
|⌘⇡N |

2
M

2
⇡N

i
, (15)

where

M
2
⇡N = G01

⇥
c
1⇡ (MGT1⇡ +MT1⇡)

+ c
2⇡ (MGT2⇡ +MT2⇡)

⇤2
. (16)

The expressions for the factors c1⇡ and c
2⇡ are found in

Eq. (151) of Ref. [65]. These factors depend on the
masses of the up and down quark, and choosing (mu +
md) = 11.6 MeV [26, 76], one gets c1⇡ = �83.598, c2⇡ =
359.436 that we use in these calculations. The description
of M↵ (with ↵ = GT1⇡, T1⇡, GT2⇡, T2⇡) is presented
in the Appendix.

Shown in Table VII are the values of the short-range
LNV parameters. Using the di↵erent hadronization pre-
sented in Figs. 2f and 2g, "̃1 provides significantly more
stringent upper-limits than "1. With the exception of
48Ca, where the "̃2 limit is identical to "2, the other "̃2

upper-limits are almost double those of "2.

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm��i ⇠ 140 meV. A wider range of

TABLE VII. The “on-axis“ values of the long-range param-
eters "i. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[55].
Considering the diagram in Fig. 2e, it is possible to

get lower limits for ✏TR
TR, denoted as ✏̃TR

TR in Table V, than
those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.
As suggested in Ref. [71] (see the diagrams of

their Fig.1), at the electroweak scale the low-energy
dimension-6 Lagrangian L6 corresponds to dimension-5
and dimension-7 BSM operators, O5 and O7, when the
appropriate Higgs fields are included. Similarly the low
energy dimension-9 Lagrangian L9 can be rearranged as
dimension-9 and dimension-11 operators, O9 and O11,.
Using the e↵ective field theory one can infer the energy
scale ⇤D up to which this e↵ective field operators are not
broken:

LD =
g

(⇤D)D�4OD (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [71] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangian
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their Fig.1), at the electroweak scale the low-energy
dimension-6 Lagrangian L6 corresponds to dimension-5
and dimension-7 BSM operators, O5 and O7, when the
appropriate Higgs fields are included. Similarly the low
energy dimension-9 Lagrangian L9 can be rearranged as
dimension-9 and dimension-11 operators, O9 and O11,.
Using the e↵ective field theory one can infer the energy
scale ⇤D up to which this e↵ective field operators are not
broken:

LD =
g

(⇤D)D�4OD (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [71] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangian

ye =3×10
-6 electron massYukawaηN ∝

1
mWR
4 mN

8

TABLE VII. The “on-axis“ values of the long-range param-
eters "�↵. The last three lines present the ⌘⇡N limits for ⇢Rp

SUSY, and their corresponding "̃1 and "̃1 limits, respectively.
48Ca 76Ge 82Se 130Te 136Xe

|"1| 1.4 · 10�5 3.2 · 10�7 2.4 · 10�6 7.1 · 10�7 1.5 · 10�7

|"2| 5.1 · 10�8 1.2 · 10�9 8.8 · 10�9 2.6 · 10�9 5.4 · 10�10

|"LLz(RRz)
3 | 4.2 · 10�7 9.7 · 10�9 7.3 · 10�8 2.1 · 10�8 4.5 · 10�9

|"LRz(RLz)
3 | 5.7 · 10�7 1.3 · 10�8 9.9 · 10�8 2.9 · 10�8 6.1 · 10�9

|"4| 4.4 · 10�7 9.9 · 10�9 7.6 · 10�8 2.3 · 10�8 4.8 · 10�9

|"5| 6.5 · 10�6 1.5 · 10�7 1.1 · 10�6 3.4 · 10�7 7.2 · 10�8

|⌘⇡N | 7.7 · 10�8 2.9 · 10�9 2.2 · 10�8 6.4 · 10�9 1.4 · 10�9

|"̃1| 3.3 · 10�7 1.2 · 10�8 9.4 · 10�8 2.7 · 10�8 5.8 · 10�9

|"̃2| 5.1 · 10�8 1.9 · 10�9 1.5 · 10�8 4.3 · 10�9 9.1 · 10�10

V. DISCUSSIONS

From the ⌘0⌫ limits presented in Table III for 136Xe,
one gets the lowest shell model upper-limit for the Majo-
rana neutrino mass hm��i ⇠ 140 meV. A wider range of
values, 60�165 meV can be found if the NME calculated
with a larger number of nuclear models are considered
[58].

Considering the diagram in Fig. 2e, it is possible to
get lower limits for ✏TR

TR, denoted as ✏̃TR
TR in Table V, than

those corresponding to the diagram in Fig. 2c, with the
exception of 48Ca, as can be seen in Table V. Considering
the di↵erent hadronization scenario presented in Figs. 2f
and 2g, "̃1 provides a significantly more stringent upper-
limits than "1. With the exception of 48Ca, where the
"̃2 limit is identical to "2, the other "̃2 upper-limits are
almost double those of "2.

TABLE VIII. The BSM e↵ective scale (in GeV) for di↵er-
ent dimension-D operators at the present 136Xe half-life limit
(⇤0

D) and for T1/2 ⇡ 1.1⇥ 1028 years (⇤D).

OD ✏̄D ⇤0
D(y = 1) ⇤0

D(y = ye) ⇤D(y = ye)

O5 2.8 · 10�7 2.12 · 1014 1904 19044

O7 2.0 · 10�7 3.75 · 104 541 1165

O9 1.5 · 10�7 2.47 · 103 2470 3915

O11 1.5 · 10�7 1.16 · 103 31 43

As suggested in Ref. [74] (see the diagrams of their
Fig.1), at the electroweak scale when the appropriate
Higgs fields are included, the diagram 1.b originates
from a dimension-5 BSM Lagrangian, O5, responsible for
the Majorana neutrino mass. Similarly the low-energy
dimension-6 Lagrangian L6 corresponds to a dimension-
7 BSM operator, O7, and the low energy dimension-9
Lagrangian L9 can be rearranged as dimension-9 and
dimension-11 operators, O9 and O11. Using the e↵ec-
tive field theory one can infer the energy scale ⇤D up to
which these e↵ective field operators are not broken:

LD =
g

(⇤D)D�4OD, (17)

where D is the dimension of the e↵ective field opera-
tor. Here g is considered to be a dimensionless coupling
constant of the order of 1. Following Ref. [74] one can
find relations between the constants entering our L6 and
L9 Lagrangian and the e↵ective field theory Lagrangians
above the electroweak scale, Eq. (17).

me✏̄5 =
g
2(yv)2

⇤5
,

GF ✏̄7
p
2

=
g
3(yv)

2(⇤7)3
,

G
2
F ✏̄9

2mp
=

g
4

(⇤9)5
,

G
2
F ✏̄11

2mp
=

g
6(yv)2

(⇤11)7
. (18)

Here, me = 0.511 ⇥ 10�3 GeV is the electron mass,
g = 1 is a generic coupling constant, v = 174 GeV is
the Higgs vacuum expectation value, y is a Yukawa cou-
pling associated to the interaction with the Higgs bosons,
GF = 1.166⇥10�5 GeV�2 is the Fermi coupling constant,
and mp = 0.938 GeV is the proton mass. The ✏̄D (with
D = {5, 7, 9, 11}) can be extracted from the LNV pa-
rameters in Eqs. (2) and (3). Considering that values of
these LNV parameters may be a↵ected by mixing angles
that might distort the scales in Eq. (17), we choose their

maximum values: ✏̄5 = |⌘0⌫ |, ✏̄7 = Max
h
|✏
V+A
V�A|, |✏

V+A
V+A|,

|✏
S+P
S±P |, |✏

TR
TL |, |✏

TR
TR|

i
, ✏̄9 = Max

h
|"1|, |"2|, |"

LLz(RRz)
3 |,

|"
LRz(RLz)
3 |, |"4|, |"5|

i
, and ✏̄11 = ✏̄9.

To extract the limits of the BSM scales ⇤5,7,9,11 we
need the most stringent limits for the LNV parameters,
which are found for the case of 136Xe. Inspecting Ta-
bles V and VII we found that ✏̄5 corresponds to the ⌘0⌫

parameter of the light left-handed Majorana neutrino ex-
change mechanism. For ✏̄7 we choose ✏

V+A
V+A, that is the

largest long-range ✏
�
↵ parameter. In the case of ✏̄9 = ✏̄11

we select "1, being the largest short-range "
�
↵ parameter.

These values are listed in Table VIII.
As in Ref. [74] we take g = 1 in Eq. (17). However,

we introduce here the Yukawa coupling y between the
Higgs boson field and the fermion fields, and we consider
two cases: (i) y = 1 corresponding to the top quark mass
(choice made in Ref. [74]), and (ii) y = 3 ⇥ 10�6 corre-
sponding to the electron mass. Based on these values we
calculate the limits of the new BSM scales or di↵erent
dimension-D operators. The results are shown in Table
VIII. The ⇤0

D scales are calculated using the present
lower limit for the half-life of 136Xe, 1.1 ⇥ 1026. ⇤D is
estimated assuming a half-life of T1/2 ⇡ 1.1⇥ 1028 years,
which would correspond to a hm��i ⇡ 14 meV.
The ⇤9 scale does not depend on the unknown Yukawa

coupling, and from that point of view, if O9 amplitude
is dominant, that would indicate that the scale of new
physics should be found around 3 TeV. Unfortunately,
the ⇤9 scale, as well as all other high D scales, are not
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L

(2)
6 ) =

G
2
F

2
T

h
jV�AJ

†
V�AjV�AJ

†
V�A

+ ✏
�
↵j�J

†
↵jV�AJ

†
V�A + ✏

�
↵✏

�
�j�J

†
↵j�J

†
�

i
. (3)

In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T

0⌫
1/2

i�1
=g

4
A

2

4
X

i

|Ei|
2
M

2
i +Re

2

4
X

i 6=j

EiEjMij

3

5

3

5 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.

One coupling dominance: which one?  
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:

T (L(1)
6 L

(2)
6 ) =

G
2
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
Jµ⌫j

⌫ + "5J
µ
Jjµ

i
, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:

h
T

0⌫
1/2

i�1
=g

4
A

2

4
X

i

|Ei|
2
M

2
i +Re

2

4
X

i 6=j

EiEjMij

3

5

3

5 . (5)

Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X

↵,�

✏
�
↵j�J

†
↵

3

5 , (2)

where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
G

2
F

2mp

h
"1JJj + "2J

µ⌫
Jµ⌫j + "3J

µ
Jµj

+"4J
µ
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, (4)

with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
GF
p
2

2

4jµV�AJ
†
V�A,µ +

⇤X
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✏
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†
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏

�
↵ =

{✏
V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏
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TR
TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
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4jµV�AJ
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V�A,µ +
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏
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↵ =
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V+A
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S+P
S±P , ✏
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TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:

L9 =
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2mp
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with "
�
↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏

TR
TL , ✏

TR
TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1. The 0⌫�� decay process diagrams: (1a) presents the
generic description of the process, (1b) shows the most studied
case in the literature, that of the light left-handed neutrino
exchange, (1c) is the long-range component of the 0⌫�� decay
diagram, while (1d) displays the short-range part.

data from LHC and other experiments.
At the quark-level, we present the generic 0⌫�� Feyn-

man diagrams in Figure 1. We consider contributions
coming from the light left-handed Majorana neutrino
(Fig. 1b), a long-range part coming from the low-energy
four-fermion charged-current interaction (Fig. 1c), and a
short-range part (Fig. 1d).

We treat the long-range component of the 0⌫�� dia-
gram as two point-like vertices at the Fermi scale, which
exchange a light neutrino. In this case, the Lagrangian
can be expressed in terms of e↵ective couplings [15]:

L6 =
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4jµV�AJ
†
V�A,µ +
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where J
†
↵ = ūO↵d and j� = ēO�⌫ are hadronic

and leptonic Lorentz currents, respectively. The def-
initions of the O↵,� operators are given in Eq. (3)
of Ref. [15]. The LNV parameters are ✏
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TR}. The ”*” symbol in-

dicates that the term with ↵ = � = (V �A) is explicitly
taken out of the sum. GF = 1.1663787 ⇥ 10�5 GeV�2

denotes the Fermi coupling constant.
The 0⌫�� decay amplitude is proportional to the time-

ordered product of two e↵ective Lagrangians [15]:
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In the short-range part of the diagram presented in Fig.
1d we consider the interaction to be point-like. Express-
ing the general Lorentz-invariant Lagrangian in terms of
e↵ective couplings [39], we get:
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with "
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↵ = "

xyz
↵ = {"1, "2, "

LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6}.

These parameters have dependence on the chirality of the
hadronic and the leptonic currents involved, with xyz =
L/R,L/L,L/R. In the case of "3, one can distiguish
between the di↵erent chiralities thus we express them

separately as "
LLz(RRz)
3 and "

LRz(RLz)
3 . As illustrated

in the diagrams of Fig.1 in Ref. [47], at the electroweak
scale the long-range dimension 6 Lagrangian L6 is written
in terms of dimension 5 and dimension 7 operators, and
the short-range dimension 9 Lagrangian is expressed with
dimension 9 and dimension 11 operators.
When calculating the NME and extracting LNV pa-

rameter limits, it is necessary to identify the contri-
butions to the decay rate that correspond to di↵erent
hadronization prescriptions. Figure 2 shows the nucleon-
level diagrams in a similar way to Figure 1, but detailing
tree additional components related to the pion-exchange.
After hadronization (see Fig. 2), the extra terms in
the Lagrangian require the knowledge of 23 individual
NME[13–15, 38, 45, 47]. We can write the half-life in a
factorized compact form that is useful when calculating
the on-axis values (when only one term in the e↵ective
Lagrangian dominates the process) of the LNV parame-
ters:
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Here, the Ei contain the neutrino physics parameters,
with E1 = ⌘0⌫ representing the exchange of light left-
handed neutrinos corresponding to Fig. 2b, E2�7 =
{✏

V+A
V�A, ✏

V+A
V+A, ✏

S+P
S±P , ✏
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TL , ✏
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TR, ⌘⇡⌫} are the long-

range parameters appearing in Figs. 2c and 2e, and

E8�15 = {"1, "2, "
LLz(RRz)
3 , "

LRz(RLz)
3 , "4, "6, ⌘1⇡, ⌘2⇡}

denote the short-range parameters at the quark level in-
volved in the diagram of Fig. 2d, 2f, 2g. Following Refs.
[13–15, 45], we write M

2
i as combinations of NME de-

scribed in Eqs. (8, 10, 12, 14, and 16) (see also Eq.(18)
in the Appendix for the individial NME) and integrated
PSF [44] denoted with G01 � G09. Our values of the
PSF are presented in Table I. In some cases the inter-
ference terms E↵E�M↵� are small [48] and can be ne-
glected. Considering an on-axis approach when extract-
ing the LNV parameters limits, the interference terms are
not taken into account in our analysis. In the following,
we extract the on-axis values of these parameters using
the most recent experimental limits of the half-lives, as
presented in Table I.
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FIG. 1: (Color online) Electrons angular distribution
(upper panel) and energy distributions (lower panel) for
the competition between ⌫ and ⌘ mechanisms, Case 1.

nucleon size e↵ects, and higher order corrections of the
nucleon current [14]. Due to the small contribution of
the �P factor (less than 4% when changing from 0.1 to
0.5), we do not calculate it and use a typical shell model
value of 0.5 for the case of 82Se [41]. We point out that
some of the neutrino potentials in Eq. (B5) are divergent
[26], such that the approximations �GT! = 2��GTq and
�F! = 2�F � �Fq [42] are not accurate. This simplifica-
tion was widely used because of the high complexity and
di�culty of the previous shell model calculations with
large model spaces [41, 43], when most of most 0⌫��
decaying isotopes were considered. A solution to this
problem is to first perform the radial integral over the
coordinate space and only after, the second integral over
the momentum space in Eq. (B6). For gA we use the
older value of 1.254 for an easier comparison to other
NME and PSF results in the literature. It was shown in
Ref. [10] that changing to the newer value of 1.27 [44]
changes the result by only 0.5%.

The NME calculated in this work are presented on the
first line of Table I. The second line displays the normal-
ized values �↵ (↵ = F,GT!, F!, GTq, Fq, T,R).

The PSF that enter in the components of Eq. (4) are
calculated in this work using Eq. (C1)(see also Ref. [32]).

FIG. 2: (Color online) Same as Fig. 1 for the
competition between ⌫ and � mechanisms, Case 2.

TABLE I: The 82Se NME corresponding to Eq. (B3).

MGT MF MGT! MF! MGTq MFq MT MR

2.993 -0.633 2.835 -0.618 3.004 -0.487 0.012 3.252

�F �GT! �F! �GTq �Fq �T �R

-0.134 0.947 -0.131 1.003 -0.103 0.004 1.086

The values of the �1± and �2± factors of Eq. (B2) are:
�1+ = 0.717, �1� = 1.338, �2+ = 0.736, �2� = 0.930.

These can be also calculated by a simple manipulation
of Eq. (9), involving Ã±k defined in Appendix B. In the
case of G1, we obtain results which are in good agreement
with those of Ref. [34], having a di↵erence of about 10%.
The results of Ref. [34] have been obtained more rigor-
ously by solving numerically the Dirac equation, and by
including the e↵ects of the finite nuclear size and elec-
tron screening using a Coulomb potential derived from a
realistic proton density distribution in the daughter nu-
cleus. This more rigorous treatment of the finite nuclear
charge can provide di↵erences of up to 30-40% in G1 for
heavy nuclei as compared with Eq. (C1) [33, 34]. How-
ever, given the larger uncertainty in the NME [39], and
because of the small di↵erence in PSF for the case of
82Se, this approximation is satisfactory and we use it in
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FIG. 1: (Color online) Electrons angular distribution
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the competition between ⌫ and ⌘ mechanisms, Case 1.

nucleon size e↵ects, and higher order corrections of the
nucleon current [14]. Due to the small contribution of
the �P factor (less than 4% when changing from 0.1 to
0.5), we do not calculate it and use a typical shell model
value of 0.5 for the case of 82Se [41]. We point out that
some of the neutrino potentials in Eq. (B5) are divergent
[26], such that the approximations �GT! = 2��GTq and
�F! = 2�F � �Fq [42] are not accurate. This simplifica-
tion was widely used because of the high complexity and
di�culty of the previous shell model calculations with
large model spaces [41, 43], when most of most 0⌫��
decaying isotopes were considered. A solution to this
problem is to first perform the radial integral over the
coordinate space and only after, the second integral over
the momentum space in Eq. (B6). For gA we use the
older value of 1.254 for an easier comparison to other
NME and PSF results in the literature. It was shown in
Ref. [10] that changing to the newer value of 1.27 [44]
changes the result by only 0.5%.

The NME calculated in this work are presented on the
first line of Table I. The second line displays the normal-
ized values �↵ (↵ = F,GT!, F!, GTq, Fq, T,R).

The PSF that enter in the components of Eq. (4) are
calculated in this work using Eq. (C1)(see also Ref. [32]).

FIG. 2: (Color online) Same as Fig. 1 for the
competition between ⌫ and � mechanisms, Case 2.

TABLE I: The 82Se NME corresponding to Eq. (B3).

MGT MF MGT! MF! MGTq MFq MT MR

2.993 -0.633 2.835 -0.618 3.004 -0.487 0.012 3.252

�F �GT! �F! �GTq �Fq �T �R

-0.134 0.947 -0.131 1.003 -0.103 0.004 1.086

The values of the �1± and �2± factors of Eq. (B2) are:
�1+ = 0.717, �1� = 1.338, �2+ = 0.736, �2� = 0.930.

These can be also calculated by a simple manipulation
of Eq. (9), involving Ã±k defined in Appendix B. In the
case of G1, we obtain results which are in good agreement
with those of Ref. [34], having a di↵erence of about 10%.
The results of Ref. [34] have been obtained more rigor-
ously by solving numerically the Dirac equation, and by
including the e↵ects of the finite nuclear size and elec-
tron screening using a Coulomb potential derived from a
realistic proton density distribution in the daughter nu-
cleus. This more rigorous treatment of the finite nuclear
charge can provide di↵erences of up to 30-40% in G1 for
heavy nuclei as compared with Eq. (C1) [33, 34]. How-
ever, given the larger uncertainty in the NME [39], and
because of the small di↵erence in PSF for the case of
82Se, this approximation is satisfactory and we use it in
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where �1 and �2 are the relative CP phases (A7). Dif-
ferent processes give rise to several contributions: C⌫2

are from the left-handed leptonic and currents, C�2 from
the right-handed leptonic and right-handed hadronic cur-
rents, and C⌘2 from the right-handed leptonic and left-
handed hadronic currents. Interference between these
terms is represented by the the contributions of C⌫�, C⌫⌘

and C�⌘. The precise definitions are

C⌫2 = C1 h⌫i2 , C⌫� = C2 h⌫i h�i , C⌫⌘ = C3 h⌘i h⌫i ,
C�2 = C4 h�i2 , C⌘2 = C5 h⌘i2 , C�⌘ = C6 h⌘i h�i , (5)

where C1�6 are combinations of nuclear matrix elements
and phase-space factors (PSF). Their expressions can be
found in the Appendix B, Eqs. (B1). M0⌫

GT and the other
nuclear matrix elements that appear in the expressions of
the C factors are presented in Eq. (B4). In the context of
the left-right symmetric model we associate the neutrino
physics parameters h⌫i, h�i, h⌘i, with the corresponding
⌘i parameters defined in Appendix A,

h⌫i = |⌘⌫ | , (6a)

h�i = |⌘�| , (6b)

h⌘i = |⌘⌘| , (6c)

but we leave them in this generic form for the case that
other mechanisms could contribute. For example, any
contribution from a mechanism whose amplitude is pro-
portional with

p
G0⌫

01 , such as ⌘LNR
and ⌘RNR

, may be
added to the h⌫i term with an appropriate redefinition of
the nuclear matrix elements and the interference phases.

III. 0⌫�� DECAY ELECTRONS
DISTRIBUTIONS

The di↵erential decay rate of the 0+ ! 0+ 0⌫�� tran-
sition can be expressed as:
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d✏1dcos✓12
=
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2 (meR)2
[A(✏1) +B(✏1)cos✓12] . (7)

✏1 is the energy of the first electron in units of mec2, R is
the nuclear radius (R = r0A1/3, with r0 = 1.2fm), ✓12 is
the angle between the outgoing electrons, and the expres-
sions for the constant a0⌫ and the function !0⌫ are given
in the Appendix C, Eqs. (C2) and (C3), respectively.
The functions A(✏) and B(✏) are defined as combinations
of factors that include PSF and NME:

A(✏1) = |N1(✏1)|2 + |N2(✏1)|2 + |N3(✏1)|2 + |N4(✏1)|2,
(8a)

B(✏1) = �2Re [N?
1 (✏1)N2(✏1) +N?

3 (✏1)N4(✏1)] . (8b)

The detailed expressions of the N1�4(✏1) components are
presented in Eqs. (B7)
The expression of the half-life can be written as follows:
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with the kinetic energy T defined as:

T =
Q��

mec2
. (10)

A. Angular distributions

The integration of Eq. (7) over ✏1 provides the angular
distribution of the electrons. We can now write it as:
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where d⌦ = 2⇡dcos✓12.

B. Energy distributions

Integrating Eq. (7) over cos✓12, one obtains the single
electron spectrum. When investigating the energy dis-
tribution, it is convenient to express the decay rate as a
function of the di↵erence in the energy of the two outgo-
ing electrons, �t = (✏1�✏2)mec2, where ✏2 = T+2�✏1 is
the kinetic energy of the second electron. We now express
the energy of one electron as:

✏1 =
T + 2 + �t

mec2

2
. (12)

After changing the variable, the energy distribution as a
function of �t is:

2dW 0⌫
0+!0+

d(�t)
=

2a0⌫

(meR)2
!0⌫(�t)

mec2
A(�t). (13)

IV. RESULTS

Here we analyze in detail the two-electron angular and
energy distributions for 82Se, which was chosen as a base-
line isotope by SuperNEMO experiment [27, 29]. We
calculate the 82Se NME of Eq. (B4) using a shell model
approach with the JUN45 [40] e↵ective Hamiltonian in
the jj44 model space [9, 10]. The nuclear structure ef-
fects are taken into account by the inclusion of short-
range correlations with CD-Bonn parametrization, finite
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Here we analyze in detail the two-electron angular and
energy distributions for 82Se, which was chosen as a base-
line isotope by SuperNEMO experiment [27, 29]. We
calculate the 82Se NME of Eq. (B4) using a shell model
approach with the JUN45 [40] e↵ective Hamiltonian in
the jj44 model space [9, 10]. The nuclear structure ef-
fects are taken into account by the inclusion of short-
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are from the left-handed leptonic and currents, C�2 from
the right-handed leptonic and right-handed hadronic cur-
rents, and C⌘2 from the right-handed leptonic and left-
handed hadronic currents. Interference between these
terms is represented by the the contributions of C⌫�, C⌫⌘

and C�⌘. The precise definitions are
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where C1�6 are combinations of nuclear matrix elements
and phase-space factors (PSF). Their expressions can be
found in the Appendix B, Eqs. (B1). M0⌫

GT and the other
nuclear matrix elements that appear in the expressions of
the C factors are presented in Eq. (B4). In the context of
the left-right symmetric model we associate the neutrino
physics parameters h⌫i, h�i, h⌘i, with the corresponding
⌘i parameters defined in Appendix A,

h⌫i = |⌘⌫ | , (6a)

h�i = |⌘�| , (6b)

h⌘i = |⌘⌘| , (6c)

but we leave them in this generic form for the case that
other mechanisms could contribute. For example, any
contribution from a mechanism whose amplitude is pro-
portional with

p
G0⌫

01 , such as ⌘LNR
and ⌘RNR

, may be
added to the h⌫i term with an appropriate redefinition of
the nuclear matrix elements and the interference phases.

III. 0⌫�� DECAY ELECTRONS
DISTRIBUTIONS

The di↵erential decay rate of the 0+ ! 0+ 0⌫�� tran-
sition can be expressed as:
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✏1 is the energy of the first electron in units of mec2, R is
the nuclear radius (R = r0A1/3, with r0 = 1.2fm), ✓12 is
the angle between the outgoing electrons, and the expres-
sions for the constant a0⌫ and the function !0⌫ are given
in the Appendix C, Eqs. (C2) and (C3), respectively.
The functions A(✏) and B(✏) are defined as combinations
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The detailed expressions of the N1�4(✏1) components are
presented in Eqs. (B7)
The expression of the half-life can be written as follows:
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with the kinetic energy T defined as:
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A. Angular distributions

The integration of Eq. (7) over ✏1 provides the angular
distribution of the electrons. We can now write it as:
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where d⌦ = 2⇡dcos✓12.

B. Energy distributions

Integrating Eq. (7) over cos✓12, one obtains the single
electron spectrum. When investigating the energy dis-
tribution, it is convenient to express the decay rate as a
function of the di↵erence in the energy of the two outgo-
ing electrons, �t = (✏1�✏2)mec2, where ✏2 = T+2�✏1 is
the kinetic energy of the second electron. We now express
the energy of one electron as:
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2
. (12)

After changing the variable, the energy distribution as a
function of �t is:
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IV. RESULTS

Here we analyze in detail the two-electron angular and
energy distributions for 82Se, which was chosen as a base-
line isotope by SuperNEMO experiment [27, 29]. We
calculate the 82Se NME of Eq. (B4) using a shell model
approach with the JUN45 [40] e↵ective Hamiltonian in
the jj44 model space [9, 10]. The nuclear structure ef-
fects are taken into account by the inclusion of short-
range correlations with CD-Bonn parametrization, finite
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Fig. 2. Variation of the factor for maximum interference ε with Q ββ . Plot is obtained 
by varying the Q -value, while keeping the mass fixed to 76Ge and the charge of the 
final nucleus Z f = 34 of 76Se. Different nuclei are added in the plot for the g.s. and 
first 0+ excited states Q ββ values.

calculated (numerically) taking this into account by introducing the 
Fermi factor [40]. In [41] this was done by using a non-relativistic 
Fermi factor, which is independent of the Q -value of the process. 
Moreover the electrons were assumed to be ultra-relativistic in the 
analysis in order to arrive at the numerical values of the small 
suppression factors of the interference term. This is in contrast to 
the consideration of the non-relativistic Fermi factor for electron 
wave function used in Ref. [41]. For our analysis we have correctly 
considered the relativistic Fermi factor. In addition we have also 
considered the effect of finite nuclear size. Although the numerical 
results obtained in our current study are very close to the values 
in references [41] and [14], our results are more general since the 
assumption of ultra-relativistic electrons can be relaxed. Consid-
eration for relativistic Fermi factor and finite nuclear size extend 
the analysis and allows us to predict the Q ββ values for which the 
effect of interference can be observable.

4. Conclusions

In summary, we studied the interference effects to the 0νββ
decay rate when contributions from the light left-handed and 
heavy right-handed neutrino exchange mechanisms are considered. 
These effects were first analyzed long time ago in Ref. [41] under 
some simplifying assumptions, a simple relation for the relative 
interference amplitude was presented and numerical values for 
few isotopes were provided (see also [14]). The general conclusion 
was that these effects are small and can be neglected. Unfortu-
nately, the analytical expression seem to be marred by typos and 
one needed to redo the analysis to extend it to other isotopes of 
recent experimental interest. In addition, for a long time the stan-
dard mass mechanism was the only one mainly considered, and 
the results of Ref. [41] were almost forgotten.

In recent years, however, the contributions from other mecha-
nisms, especially those related to the LRSM, became relevant and 
competitive to BSM studies at LHC and elsewhere. In this letter we 
extended the analysis of Ref. [41] by considering the relativistic 
distortion of the outgoing electrons wave functions, the finite size 
effects of the daughter nucleus, and by applying the new formal-
ism to all isotopes of recent experimental interest. In addition, we 
provide an analysis of the relative interference factor as a function 
of Q ββ , mass number A, and charge of the daughter Z f , and we 
find that only its decrease with larger Q ββ is relevant. This feature 
indicates that the relative interference factor might not be negli-
gible for cases where Q ββ is small, such as that of 128Te and for 
the transitions to the first excited 0+ states (e.g. it reaches 44% for 

110Pa). Therefore, we provide numerical results for all these new 
transitions that could be of experimental interest.

Finally, the analysis presented can be extended to other pairs 
of 0νββ mechanisms where both outgoing electrons have different 
helicities. Examples of such mechanisms described in within the 
effective field theory approach can be found in Ref. [47].
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exchange in the presence of purely RH currents. Both of these are mass-dependent mechanisms.
The two momentum-dependent mechanisms are shown in fig.1c and 1d. Fig.1c is the so-called
l -mechanism where LH and RH currents are combined. The so-called h-diagram of fig.1d arises
due to the WL�WR mixing. The other possible diagrams are not considered due to the suppression
of neutrino mixing and W-boson parameters [10].

Considering the four diagrams we arrive at the following inverse half-life formula for 0nbb ,
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The NME are taken to be real and the complex NPP along with the phases are defined as follows,
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(14)

The NME include Fermi and Gamow-Teller contributions [16].

4 Analysis of interference terms

In this section we analyze the contribution of the interference terms to the total half-life arising
from the four terms. Due to the modulus squares in the expression of the half-life in eq.9 we get
six interference terms between all possible pairs of mechanisms,

[T 0n
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The coefficients Cs are combinations of NME and integrated PSF,

Cm = (1�cF)
2G01, (16)

Cl = [c2
2�G02 +
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9
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1+G04 �

2
9
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TABLE III. Interference coefficients εmη(α) in % for specific α

values.

Nuclei εmη(0.25) εmη(0.5) εmη(0.75) εmη(1)

48Ca 25.11 29.60 31.07 31.40
76Ge 39.27 46.28 48.59 49.09
82Se 31.48 37.10 38.94 39.35
124Sn 36.32 42.80 44.93 45.40
130Te 34.29 40.41 42.42 42.86
136Xe 34.75 40.95 42.99 43.44

due to the exchange of heavy particles. LEFT
6 gives rise to

long-range contributions to 0νββ due to the exchange of light
neutrinos, see Figs. 1(b) and 1(c) of Ref. [27]. In the EFT
approach to 0νββ, the dimension-nine Lagrangian is [27]

LEFT
9 =

G2
β

2mP

[
ε1JJ j + ε2JµνJµν j + εLLz

3 JµJµ j

+ εRRz
3 JµJµ j + εLRz

3 JµJµ j + εRLz
3 JµJµ j

+ ε4JµJµν jν + ε5JµJ jµ
]
. (65)

The expressions for the leptonic and hadronic currents are
given in Ref. [27]. The short-range contribution [see Fig. 1(d)
of Ref. [27] ] to 0νββ, AN

R , arises from the JµJµ j term
of LEFT

9 in first-order of perturbation where we approximate
εRRz

3 = ηN . However, the 0νββ half-life formula, Eq. (47),
is the same in both approaches. Thus, our analysis of the
interference between different mechanisms arising from Lβ

LR
can easily be extended to a subset of terms of the EFT
approach to 0νββ Lagrangians LEFT

6 and LEFT
9 . For a complete

discussion of 0νββ in the EFT approach, see Refs. [28–30].
The contribution of the (S ± P) and TR terms of LEFT

6 to
the total decay rate of 0νββ, along with the constraints on
the effective LNV couplings, have been studied with the
assumption that the interference terms are negligible [27]. As

TABLE IV. Interference coefficient ελη(α) in % for specific α

values.

Nuclei ελη(0.25) ελη(0.5) ελη(0.75) ελη(1)

48Ca 0.45 0.54 0.56 0.57
76Ge 0.31 0.37 0.38 0.39
82Se 0.48 0.56 0.59 0.60
124Sn 0.29 0.34 0.35 0.36
130Te 0.31 0.36 0.38 0.39
136Xe 0.30 0.35 0.37 0.38

an extension of our current work, we plan to explore in the
future the contribution of all the possible interference terms
arising from LEFT

6 . A similar analysis can be also carried out
for the interference terms arising from LEFT

9 ; see, e.g., Eq. (5)
of Ref. [27].

IV. ANALYSIS OF INTERFERENCE TERMS

We now analyze the contribution of each of the interfer-
ence terms in Eq. (47) by comparison with the related pairs
of squared amplitudes for each individual mechanisms. The
interference between light-LH and heavy-RH neutrinos [CmN
term in Eq. (47)] was analyzed in Ref. [9]. Here we analyze
the other five terms (three after symmetry, see below). We
write a generic approximate inverse half-life formula for a pair
of mechanisms in the following manner:

[
T 0ν

1/2

]−1 " g4
A[Ci|ηi|2 + Cj |η j |2 + Ci j |ηi||η j | cos (φi − φ j )],

(66)

where i, j = {m, N, λ, η} and i #= j. We assume the individ-
ual mechanism squared amplitude to be a factor α of each
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other (0 < α ! 1),

Cj |η j |2 = αCi|ηi|2 ⇒ |η j | =
√

α
Ci

Cj
|ηi|. (67)

Thus, our approximate generic half-life expression becomes
[
T 0ν

1/2

]−1 # g4
A(1 + α)Ci|ηi|2[1 + εi j cos (φi − φ j )], (68)

where the interference coefficient

εi j (α) =
√

α

1 + α

|Ci j |√
|Ci||Cj |

(69)

would allow us to compare the contribution of the interference
term with respect to that of each individual mechanisms for

maximum interference, | cos (φi − φ j )| = 1. We numerically
calculate the products of NME and PSF, and the ten Ci and Ci j
of Eqs. (48)–(57), given in Table I.

The NME for the six isotopes used in this study were
calculated by using shell-model techniques [2,31] in three
different model spaces, using three different effective Hamil-
tonians [27,32,33]. Some of the NME are sensitive to short-
range correlation (SRC) effects entering the two-body matrix
elements. Here we used the CD-Bonn SRC parametrization
[2]. Using the AV18 SRC parametrization [2] or/and the
Strasbourg-Madrid choice for the effective Hamiltonians [27]
does not significantly change the results. The relevant NME
and PSF used in this study are given in the Appendix. Besides
the values of Ref. [27], we have also considered the PSF of
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Neutrinos in atomic nuclei
Atomic nucleus is a high electron density medium: 

Consider 2 electrons in the lowest s-orbital of an 
Hydrogen-like atom

Electron density inside nucleus:

Ne (0) ≈
2
π
Z
aB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

Equivalent matter density: ρ =mNNe =1.67×10
6 2
π
Z
53
⎛

⎝
⎜

⎞

⎠
⎟

3

in g / cm2 >> ρSun

ρSuncore ≈150 g / cm
3

Si2 dimer

DFT el. density

2 x 1s el. Hydrogen-like density 

Electron density near nucleus:

Ne (r) ≈
2
π
Z
aB

⎛

⎝
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⎞

⎠
⎟⎟

3
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FIG. 1. The outgoing evolution of the probabilities of neu-
trinos produced inside a nucleus (Z=53 here). The neutrinos
are produced in state 2 (dashed, red) and they evolve non-
adiabatically to 68% state 1 (full, blue) and 32% state 2. The
horizontal axis represents the distance from the nucleus in
pm.

FIG. 2. Same as Fig. 1 for antineutrinos

NP = h0|T
⇥
 eL(x1) 

T
eL(x2)

⇤
|0i (11)

where  (x) is a four component Majorana spinor field.
For double beta decay only the left handed components
of the electron neutrino field contribute. The standard

FIG. 3. Similar to Fig. 1, but representing a high energy solar
neutrino coming in (from right) in state 2 with probability
100%, which decreases to 32% when it reaches the nucleus
(r=0).

FIG. 4. Same as Fig. 3 for a regular neutrino (68% state 1
and 32% state 2), which arrives with probability 1 in state 2
at the nucleus.

derivation of the 0�� decay half-life assumes that the
electron neutrino fields can be expanded in terms of the
vacuum mass eigenstates, Eq. (1), and one gets (up to
some phases)
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Here PL is the left-handedness projector operator, and C
is the spinor charge conjugation operator. The product
PLC is further used for processing the electron current
and one arrives to the standard formula for the 0�� decay
constant [10]

1
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= G(Z,Q) |M0⌫ |2
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e (13)

where G(Z,Q) is a phase space factor, M0⌫ is a nuclear
matrix element [20], and me is the electron mass.
If one wants to consider the MSW e↵ects due to the

high electron density in the atomic nuclei, one has to
take into account that di↵erent components of the vac-
uum mass eigenstate fields in Eq. (1) are changing di↵er-
ently. A simpler approach is to use 2-components spinor
fields ( See Refs. [10, 14, 16, 17, 19]). Then, one needs
to make the connection to the four-components spinor
fields necessary to further process the electron current.
The typical approach is to use a specific representation
of the Dirac matrices, the Weyl’s chiral representation
being most convenient. Using the phase conventions of
Ref. [19] (see Eqs. (A.109)-(A.122)), in the Weyl’s chiral
representation one gets

PLC =

✓
0 0
0 i�2

◆
(14)

and

 L(x) =
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◆
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1−γ 5( ) ψ̂(x) =Cψ*(x)

PLC product is further used to process the electron current, and one finally gets: 

!m!!" # $%
k

mkUek
2 $ . &3'

Here the mk’s are the masses of the three light neutrinos
and U is the matrix that transforms states with well-
defined mass into states with well-defined flavor &e.g.,
electron, mu, tau'. Equation &2' gives the !!&0"' rate if
the exchange of light Majorana neutrinos with left-
handed interactions is responsible. Other mechanisms
are possible &see Secs. III and IV.D', but they require the
existence of new particles and/or interactions in addition

to requiring that neutrinos be Majorana particles. Light-
neutrino exchange is therefore, in some sense, the
“minima” mechanism and the most commonly consid-
ered.

That neutrinos mix and have mass is now accepted
wisdom. Oscillation experiments constrain U fairly
well—Table I summarizes our current knowledge—but
they determine only the differences between the squares
of the masses mk &e.g., m2

2−m1
2' rather than the masses

themselves. It will turn out that !!&0"' is among the best
ways of getting at the masses &along with cosmology and
!-decay measurements', and the only practical way to
establish that neutrinos are Majorana particles.

To extract the effective mass from a measurement, it
is customary to define a nuclear structure factor FN
#G0"&Q!! ,Z'(M0"(2me

2, where me is the electron mass.
&The quantity FN is sometimes written as Cmm.' The ef-
fective mass !m!!" can be written in terms of the calcu-
lated FN and the measured half-life as

!m!!" = me)FNT1/2
0" *−1/2. &4'

The range of mixing matrix values given in Table I, com-
bined with calculated values for FN, allow us to estimate
the half-life a given experiment must be able to measure
in order to be sensitive to a particular value of !m!!".
Published values of FN are typically between 10−13 and
10−14 yr−1. To reach a sensitivity of !m!!"+0.1 eV there-
fore an experiment must be able to observe a half-life of
1026–1027 yr. As we discuss later, at this level of sensitiv-
ity an experiment can draw important conclusions
whether or not the decay is observed.

The most sensitive limits thus far are from the
Heidelberg-Moscow experiment: T1/2

0" &76Ge'#1.9$1025

yr &Baudis et al., 1999', the IGEX experiment:
T1/2

0" &76Ge'#1.6$1025 yr &Aalseth et al., 2002a, 2004',
and the CUORICINO experiment: T1/2

0" &130Te'#3.0
$1024 yr &Arnaboldi et al., 2005, 2007'. These experi-
ments contained 5–10 kg of the parent isotope and ran
for several years. Hence increasing the half-life sensitiv-
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FIG. 2. Feynman diagrams for !!&2"' &top' and !!&0"' &bot-
tom'.

TABLE I. Neutrino mixing parameters as summarized by the Particle Data Book )Yao et al. &2006'*
based on the individual experimental reference reporting. The limit on !m!" and % are based on the
references given. The !m!!" limit comes from the Ge experiments. The parameter values would be
slightly different if determined by a global fit to all oscillation data &Fogli et al., 2006'.

Parameter Value Confidence level Reference

sin2&2&12' 0.86−0.04
+0.03 68% Aharmin et al. &2005'

sin2&2&23' '0.92 90% Ashie et al. &2005'
sin2&2&13' (0.19 90% Apollonio et al. &1999'
)m21

2 8.0−0.3
+0.4$10−5 eV2 68% Aharmin et al. &2005'

()m32
2 ( 2.4−0.5

+0.6$10−3 eV2 90% Ashie et al. &2004'
!m!" (2 eV 95% Lobashev et al. &1999'; Kraus et al. &2005'
!m!!" (0.7 eVa 90% Klapdor-Kleingrothaus et al. &2001a'; Aalseth

et al. &2002a'
% (2 eV 95% Elgaroy and Lahov &2003'

aUsing the matrix element of Rodin et al. &2006'.

483Avignone, Elliott, and Engel: Double beta decay, Majorana neutrinos, and …

Rev. Mod. Phys., Vol. 80, No. 2, April–June 2008

Neutrinoless double beta decay of atomic nuclei

Trento July 17, 2019 M. Horoi CMU 27

In atomic nuclei NP = In vacuum NP

Vacuum result stands : mββ = Uea
2 ma
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Some of the contributions entering the neutrino field can be simplified if one consider the high electron density medium
where the neutrinos are born. In that case the terms without masses reduce to one state

X
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(�)
a j = �j,jh (25)

X

a

Uea�
(�)⇤
a j = �j,jl (26)

where jh is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and jl is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). One then wonder if these limits could change the propagator, Eq. (12), and consequently the
decay half-life Eq. (13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in
an electron density medium using the full expression for the field �M

e (x), as
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Using the unitarity of the ↵(�)(p) and �(+)(p) matrices one gets
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Putting everything together on gets
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator, Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (MGT 0 , MT 0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in

the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
limits for the LNV couplings are found for 136Xe, closely
followed by 76Ge. An upper-limit for the Majorana neu-
trino mass hm��i of 140 meV was calculated in the case
of 136Xe. Assuming a Yukawa coupling corresponding to
the electron mass, one can conclude that the 0⌫�� decay
could be consistent with a new physics scale somewhere
between 2 TeV and 20 TeV.

Using the upper limits for the LNV coupling we ex-
tract limits for the energy scale of the new physics, using
EFT arguments. We found that the scale associated with
the dimension-9 EFT operator is stable, and indicates a
new physics scale around 3 TeV. We also found that the
dimension-5 EFT operator associated with the Majorana
neutrino mass varies significantly with the Yukawa cou-
pling to Higgs and the 0⌫�� decay half-life.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons angular and energy distributions (presented in

Details are rather complex and can be found in arXiv:1803.06332

Conclusions: • the in-matter propagator still contains the vacuum 
PMNS matrix and masses!

• The formalism allows the extension of this result if 
sterile neutrinos are present (a = 1…4,(5))

• The propagators for long range 0nbb diagrams seem 
to remain unchanged (work not finished yet)
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Some of the contributions entering the neutrino field can be simplified if one consider the high electron density medium
where the neutrinos are born. In that case the terms without masses reduce to one state
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where jh is the index of the highest mass eigenstate (i.e. state 3 for the normal ordering and state 2 for the inverted
ordering), and jl is the index of the lowest mass eigenstate (i.e. state 1 for the normal ordering and state 3 for the
inverted ordering). One then wonder if these limits could change the propagator, Eq. (12), and consequently the
decay half-life Eq. (13). It is preferable to calculate the contributions to electron neutrino propagator, Eq. (11), in
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator, Eq. (12).

IV. CONCLUSIONS
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physics parameters involved in the neutrinoless double-
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9 phase-space factors. Two of these nuclear matrix ele-
ments (MGT 0 , MT 0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in

the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
limits for the LNV couplings are found for 136Xe, closely
followed by 76Ge. An upper-limit for the Majorana neu-
trino mass hm��i of 140 meV was calculated in the case
of 136Xe. Assuming a Yukawa coupling corresponding to
the electron mass, one can conclude that the 0⌫�� decay
could be consistent with a new physics scale somewhere
between 2 TeV and 20 TeV.

Using the upper limits for the LNV coupling we ex-
tract limits for the energy scale of the new physics, using
EFT arguments. We found that the scale associated with
the dimension-9 EFT operator is stable, and indicates a
new physics scale around 3 TeV. We also found that the
dimension-5 EFT operator associated with the Majorana
neutrino mass varies significantly with the Yukawa cou-
pling to Higgs and the 0⌫�� decay half-life.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons angular and energy distributions (presented in
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and using Eqs. (14) - (17) we recover the vacuum electron
neutrino propagator, Eq. (12).

IV. CONCLUSIONS

This work advances and extends the analysis of BSM
physics parameters involved in the neutrinoless double-
beta decay. We calculate 20 nuclear matrix elements and
9 phase-space factors. Two of these nuclear matrix ele-
ments (MGT 0 , MT 0) are calculated for the first time us-
ing shell model techniques. Three new hadron-level dia-
grams, Fig. 2.e, 2.f, 2.g are for the first time considered
in the full analyses based on the e↵ective field theory ap-
proach to 0⌫�� decay (they were only considered in the
past in the context of particular mechanisms).

Using a general e↵ective field theory and assuming that
one LNV coupling plays a dominant contribution to the
0⌫�� decay amplitude, we extract limits for the e↵ective
Majorana mass and 11 e↵ective low-energy couplings in

the case of five nuclei of immediate experimental inter-
est. Due to the better half-life limits, the most stringent
limits for the LNV couplings are found for 136Xe, closely
followed by 76Ge. An upper-limit for the Majorana neu-
trino mass hm��i of 140 meV was calculated in the case
of 136Xe. Assuming a Yukawa coupling corresponding to
the electron mass, one can conclude that the 0⌫�� decay
could be consistent with a new physics scale somewhere
between 2 TeV and 20 TeV.

Using the upper limits for the LNV coupling we ex-
tract limits for the energy scale of the new physics, using
EFT arguments. We found that the scale associated with
the dimension-9 EFT operator is stable, and indicates a
new physics scale around 3 TeV. We also found that the
dimension-5 EFT operator associated with the Majorana
neutrino mass varies significantly with the Yukawa cou-
pling to Higgs and the 0⌫�� decay half-life.

Should neutrinoless double-beta decay be experimen-
tally observed, a thorough analysis of the outgoing elec-
trons angular and energy distributions (presented in

Details are rather complex and can be found in arXiv:1803.06332

Conclusions: • the in-matter propagator still contains the vacuum 
PMNS matrix and masses!

• The formalism allows the extension of this result if 
sterile neutrinos are present (a = 1…4,(5))

• The propagators for long range 0nbb diagrams seem 
to remain unchanged (work not finished yet)
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FIG. 1. The outgoing evolution of the probabilities of neu-
trinos produced inside a nucleus (Z=53 here). The neutrinos
are produced in state 2 (dashed, red) and they evolve non-
adiabatically to 68% state 1 (full, blue) and 32% state 2. The
horizontal axis represents the distance from the nucleus in
pm.

FIG. 2. Same as Fig. 1 for antineutrinos

NP = h0|T
⇥
 eL(x1) 

T
eL(x2)

⇤
|0i (11)

where  (x) is a four component Majorana spinor field.
For double beta decay only the left handed components
of the electron neutrino field contribute. The standard

FIG. 3. Similar to Fig. 1, but representing a high energy solar
neutrino coming in (from right) in state 2 with probability
100%, which decreases to 32% when it reaches the nucleus
(r=0).

FIG. 4. Same as Fig. 3 for a regular neutrino (68% state 1
and 32% state 2), which arrives with probability 1 in state 2
at the nucleus.

derivation of the 0�� decay half-life assumes that the
electron neutrino fields can be expanded in terms of the
vacuum mass eigenstates, Eq. (1), and one gets (up to
some phases)
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Here PL is the left-handedness projector operator, and C
is the spinor charge conjugation operator. The product
PLC is further used for processing the electron current
and one arrives to the standard formula for the 0�� decay
constant [10]
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where G(Z,Q) is a phase space factor, M0⌫ is a nuclear
matrix element [20], and me is the electron mass.
If one wants to consider the MSW e↵ects due to the

high electron density in the atomic nuclei, one has to
take into account that di↵erent components of the vac-
uum mass eigenstate fields in Eq. (1) are changing di↵er-
ently. A simpler approach is to use 2-components spinor
fields ( See Refs. [10, 14, 16, 17, 19]). Then, one needs
to make the connection to the four-components spinor
fields necessary to further process the electron current.
The typical approach is to use a specific representation
of the Dirac matrices, the Weyl’s chiral representation
being most convenient. Using the phase conventions of
Ref. [19] (see Eqs. (A.109)-(A.122)), in the Weyl’s chiral
representation one gets
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PLC product is further used to process the electron current, and one finally gets: 
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k

mkUek
2 $ . &3'

Here the mk’s are the masses of the three light neutrinos
and U is the matrix that transforms states with well-
defined mass into states with well-defined flavor &e.g.,
electron, mu, tau'. Equation &2' gives the !!&0"' rate if
the exchange of light Majorana neutrinos with left-
handed interactions is responsible. Other mechanisms
are possible &see Secs. III and IV.D', but they require the
existence of new particles and/or interactions in addition

to requiring that neutrinos be Majorana particles. Light-
neutrino exchange is therefore, in some sense, the
“minima” mechanism and the most commonly consid-
ered.

That neutrinos mix and have mass is now accepted
wisdom. Oscillation experiments constrain U fairly
well—Table I summarizes our current knowledge—but
they determine only the differences between the squares
of the masses mk &e.g., m2

2−m1
2' rather than the masses

themselves. It will turn out that !!&0"' is among the best
ways of getting at the masses &along with cosmology and
!-decay measurements', and the only practical way to
establish that neutrinos are Majorana particles.

To extract the effective mass from a measurement, it
is customary to define a nuclear structure factor FN
#G0"&Q!! ,Z'(M0"(2me

2, where me is the electron mass.
&The quantity FN is sometimes written as Cmm.' The ef-
fective mass !m!!" can be written in terms of the calcu-
lated FN and the measured half-life as

!m!!" = me)FNT1/2
0" *−1/2. &4'

The range of mixing matrix values given in Table I, com-
bined with calculated values for FN, allow us to estimate
the half-life a given experiment must be able to measure
in order to be sensitive to a particular value of !m!!".
Published values of FN are typically between 10−13 and
10−14 yr−1. To reach a sensitivity of !m!!"+0.1 eV there-
fore an experiment must be able to observe a half-life of
1026–1027 yr. As we discuss later, at this level of sensitiv-
ity an experiment can draw important conclusions
whether or not the decay is observed.

The most sensitive limits thus far are from the
Heidelberg-Moscow experiment: T1/2

0" &76Ge'#1.9$1025

yr &Baudis et al., 1999', the IGEX experiment:
T1/2

0" &76Ge'#1.6$1025 yr &Aalseth et al., 2002a, 2004',
and the CUORICINO experiment: T1/2

0" &130Te'#3.0
$1024 yr &Arnaboldi et al., 2005, 2007'. These experi-
ments contained 5–10 kg of the parent isotope and ran
for several years. Hence increasing the half-life sensitiv-
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FIG. 2. Feynman diagrams for !!&2"' &top' and !!&0"' &bot-
tom'.

TABLE I. Neutrino mixing parameters as summarized by the Particle Data Book )Yao et al. &2006'*
based on the individual experimental reference reporting. The limit on !m!" and % are based on the
references given. The !m!!" limit comes from the Ge experiments. The parameter values would be
slightly different if determined by a global fit to all oscillation data &Fogli et al., 2006'.

Parameter Value Confidence level Reference

sin2&2&12' 0.86−0.04
+0.03 68% Aharmin et al. &2005'

sin2&2&23' '0.92 90% Ashie et al. &2005'
sin2&2&13' (0.19 90% Apollonio et al. &1999'
)m21

2 8.0−0.3
+0.4$10−5 eV2 68% Aharmin et al. &2005'

()m32
2 ( 2.4−0.5

+0.6$10−3 eV2 90% Ashie et al. &2004'
!m!" (2 eV 95% Lobashev et al. &1999'; Kraus et al. &2005'
!m!!" (0.7 eVa 90% Klapdor-Kleingrothaus et al. &2001a'; Aalseth

et al. &2002a'
% (2 eV 95% Elgaroy and Lahov &2003'

aUsing the matrix element of Rodin et al. &2006'.
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FIG. 7. E↵ective Majorana mass as a function of the lightest neutrino mass in the three neutrino (left panel) and 3+1 neutrino
(right panel) scenarios, at 99.7% CL, comparing normal (red) and inverted (blue) ordering of the three active neutrinos. Adapted
from Ref. [90]. The green band represents the 90% CL bounds from KamLAND-Zen [39], given the uncertainty on the NME.

IV. RESULTS FROM COSMOLOGY
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least two out of the three massive eigenstates became non-relativistic in the matter dominated period of the universe.
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are currently unable to extract individually the masses of the neutrino eigenstates and the ordering of their mass
spectrum and, therefore, concerning current cosmological data, all the limits on the neutrino mass ordering will come
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non-relativistic: a shift in the matter-radiation equality redshift or a change in the amount of non-relativistic energy
density at late times, both induced by the evolution of the neutrino background, that will, respectively, a↵ect the
angular location of the acoustic peaks and the slope of the CMB tail, through the Late Integrated Sachs Wolfe (ISW)
e↵ect. The former will mostly modify ⇥s, i.e. the angular position of the CMB peaks, which is given by the ratio of
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enhance the Hubble expansion rate, with a consequent reduction of the angular diameter distance and an increase of
⇥s, which would correspond to a shift of the peaks towards larger (smaller) angular scales (multipoles). The latter, the
Late ISW e↵ect, is related to the fact that the gravitational potentials are constant in a matter-dominated universe.
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Neutrino oscillations through matter

Matter acts as an optical potential

gm=cm3. Our longitude (W) corresponds to negative values
here. Crustal supplies a program (getCN1point) which for a
given latitude and longitude at the midpoint of a cell, gives
the density of each layer and the bottom of the layer. For all
maps in this paper, the depth, not the sea-level height is used
in the maps.
The Shen-Ritzwoller model is a new (2016) density map

only of the United states in 1=4 × 1=4 degree cells of
latitude and longitude. The density map is divided into
many more layers, than the Crustal map. There are more
than 50 layers.
There is also an older map, PEMC included for historical

reasons. A comparison of the density vs distance results of
each map is shown in Fig. 3 and the numerical results are
given in Tables I and II.

Although the actual situation is more complicated, we
will look at uncertainties in the total amount of matter
passed through by the neutrinos (

R
ρdx) to get an indication

of uncertainties. There are two kinds of uncertainties to be
considered, statistical and systematic. Statistical uncertain-
ties are due to random differences. Sometimes the depths
are near a boundary between two densities. The boundaries
are probably not completely flat and there is some
transition region. In the crustal map there are six points
within about 1.5 km of a depth boundary with an average
change in density of about 4%. If we view this as a random
walk then the standard deviation in the total amount of
matter passed through is 0.43%. Even if all twenty-five path
segments had a 4% uncertainty, the standard deviation in
the total amount of matter passed through would be 0.8%.
The statistical uncertainties are quite small.
There aremanymore layers given for the Shen-Ritzwoller

map and the differences from layer to layer are of the order of
1% (except for the last point, which has 15% differences).
The statistical uncertainties are again small.
The systematic uncertainties are those due to a systematic

error in the density of the layers. One approach is to compare
the mean density for the three maps. The mean density for
PEMC is 2.845 gm=cm3 for Crustal it is 2.817 gm=cm3 and
for Shen-Ritzwoller it is 2.848 gm=cm3. The PEMC map
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FIG. 2. Sea height and negative depth vs distance from
Fermilab for the neutrino beam. The solid line (blue) is the
sea height and the dashed line (red) is the negative depth.
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TABLE I. The columns describe point number, latitude, lon-
gitude, distance along the beam from the start at Fermilab (km),
sea level height (m) (usually negative), and depth, i.e., the
distance below Earth’s crust (m).

Num. Lat. Long. Distance Seaheight Depth

1 41.833 268.272 0.000 228.444 −2.244
2 41.938 268.918 54.379 −5048.751 5310.851
3 42.043 269.563 108.714 −9852.368 10129.269
4 42.148 270.209 163.003 −14184.244 14364.145
5 42.253 270.854 217.240 −18046.264 18360.764
6 42.359 271.500 271.421 −21440.344 21756.344
7 42.464 272.145 325.542 −24368.449 24652.648
8 42.569 272.791 379.599 −26832.572 27128.373
9 42.674 273.436 433.588 −28834.752 29206.652
10 42.779 274.082 487.504 −30377.055 30720.654
11 42.884 274.727 541.344 −31461.594 31838.994
12 42.989 275.373 595.102 −32090.506 32519.906
13 43.094 276.019 648.776 −32265.973 32706.572
14 43.200 276.664 702.362 −31990.203 32440.703
15 43.305 277.310 755.855 −31265.445 31693.746
16 43.410 277.955 809.251 −30093.979 30513.578
17 43.515 278.601 862.547 −28478.111 28977.512
18 43.620 279.246 915.739 −26420.191 26946.592
19 43.725 279.892 968.823 −23922.588 24466.488
20 43.830 280.537 1021.795 −20987.715 21628.814
21 43.936 281.183 1074.652 −17618.004 18252.004
22 44.041 281.828 1127.390 −13815.924 14566.324
23 44.146 282.474 1180.005 −9583.969 10398.169
24 44.251 283.119 1232.494 −4924.664 5860.664
25 44.356 283.765 1284.852 159.438 1468.962

MATTER DENSITY VERSUS DISTANCE FOR THE … PHYSICAL REVIEW D 95, 113004 (2017)

113004-3

B. Roe, Phys. Rev. D 95113004 (2017)

Goals: UPMNS (θ12, θ13, θ23, δCP)
(m1, m2, m3) vs (m3, m1, m2)
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Neutrinos traveling in matter:

   i
d
dt

ψ1
ψ2
ψ3

=
pxαx + m1β 0 0

0 pxαx + m2β 0
0 0 pxαx + m3β

+ U†
Ve(x) + VN 0 0

0 VN 0
0 0 VN

U
ψ1
ψ2
ψ3

14

   Ve(eV ) = ± 2GFNe ≈ ± 1.26 × 10−37Ne (cm−3)

Coupled Dirac equations for neutrino mass-eigenstates:

In-matter neutrino optical potential:

Reduction to a “time-dependent” Schroedinger-like equation for amplitudes:

i
d

dx

νe

νμ

ντ

= U
0 0 0
0 Δm2

21/2E 0
0 0 Δm2

31/2E
U† +

Ve(x) 0 0
0 0 0
0 0 0

νe

νμ

ντ

≡ H(x)
νe

νμ

ντ

   λ ≪ ∣ V(x)/(dV/dx) ∣
Condition: Amplitudes:

   ψf = ∑
a=1,2,3

ψa = ∑
a=1,2,3

νf,aϕa

  VN(eV ) ≈ ∓ GFNn/ 2 ≈ ∓ 6.3 × 10−38Nn (cm−3)
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Constant electron density: the eigenvalues method

Take the case of two flavors:

HUm = UmM → U
0 0 0
0 Δm2

21/2E 0
0 0 Δm2

31/2E
U† +

Ve 0 0
0 0 0
0 0 0

Um = Um
0 0 0
0 ΔM2

21/2E 0
0 0 ΔM2

31/2E

   U = ( cosθ sinθ
−sinθ cosθ) → Um = ( cosθm sinθm

−sinθm cosθm)

The flavor oscillation probability becomes:

  Pα→β = δαβ − 4∑
i>j

Re (Um*
αiUm

βiUm
αjUm*

βj) sin2 (
ΔM2

ijL

4E ) + 2∑
i>j

Im (Um*
αiUm

βiUm
αjUm*

βj) sin2 (
ΔM2

ijL

2E )

   sin2θm =
Δm2

21

ΔM2
21

sin2θ   ΔM2
21 = Δm2

21 (cos2θ − 2VeE/Δm2
21)2 + sin22θ

   Pe→μ,τ = sin22θmsin2 ( ΔM2
21L

4E )
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Constant electron density: the eigenvalues method

3 flavors: no compact solution

⌫e ! ⌫e
⌫e ! ⌫µ

⌫µ ! ⌫e

⌫e ! ⌫⌧

⌫⌧ ! ⌫e

⌫µ ! ⌫⌧

⌫⌧ ! ⌫µ
⌫µ ! ⌫µ ⌫⌧ ! ⌫⌧

Order ✏0:

A
↵�
+� -1 sin2 ✓23 cos2 ✓23 � sin2 ✓23 cos2 ✓23 � sin4 ✓23 � cos4 ✓23

A
↵�
+0 = A

↵�
�0 0 0 0 sin2 ✓23 cos2 ✓23 � sin2 ✓23 cos2 ✓23 � sin2 ✓23 cos2 ✓23

Order ✏ cos �:

B
↵�
+� = C

↵� 0 1 -1 � cos 2✓23 cos 2✓23 � 1 cos 2✓23 + 1

B
↵�
+0 = B

↵�
�0 0 0 0 � cos 2✓23 cos 2✓23 cos 2✓23

Order ✏ sin �:

S
↵� 0 ±1 ⌥1 ±1 0 0

Table 1. The values for the 5 coe�cients for all oscillation channels, ⌫↵ ! ⌫� and ⌫̄↵ ! ⌫̄� to be
used in conjunction with eq. (3.17). Note that they are 0, ± 1 or simple functions of ✓23.

written in a universal form:

P (⌫↵ ! ⌫�) = �↵�

+ 4

"
{A

↵�
+�} s

2
�c

2
� + ✏ {B

↵�
+�} (Jr cos �)

(�m
2
ren)

2
�
(�+ � ��)� (�m

2
ren � a)

 

(�+ � ��)2(�+ � �0)

#
sin2

(�+ � ��)L

4E

+ 4

"
{A

↵�
+0} c

2
� + ✏ {B

↵�
+0}

�
Jr cos �/c

2
13

� �m
2
ren

�
(�+ � ��)� (�m

2
ren + a)

 

(�+ � ��)(�+ � �0)

#
sin2

(�+ � �0)L

4E

+ 4

"
{A

↵�
�0} s

2
� + ✏ {B

↵�
�0}

�
Jr cos �/c

2
13

� �m
2
ren

�
(�+ � ��) + (�m

2
ren + a)

 

(�+ � ��)(�� � �0)

#
sin2

(�� � �0)L

4E

+ 8✏ Jr
(�m

2
ren)

3

(�+ � ��)(�+ � �0)(�� � �0)
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E

⇥


{C

↵�
} cos � cos

(�+ � �0)L

4E
+ {S

↵�
} sin � sin

(�+ � �0)L

4E

�
, (3.17)

where the eight coe�cients A↵�
ij , B↵�

ij , C↵� and S
↵� are given in Table 1. Notice that they

are 0, ± 1, or the simple functions of ✓23.

In Table 1, we observe that three relations hold between the coe�cients

A
↵�
�0 = A

↵�
+0, B

↵�
�0 = B

↵�
+0 and B

↵�
+� = C

↵�
. (3.18)

These identities hold due to the invariance of the oscillation probabilities under the follow-

ing transformation

� ! ⇡/2 + � and �+ $ ��. (3.19)

This invariance must be respected by the oscillation probabilities because the two cases in

eq. (3.19) are both equally valid ways of diagonalizing the zeroth-order Hamiltonian. Look

– 10 –

Perturbations approach: to get an idea here is one of them
• H. Minakata and S. J. Parke, JHEP 01, 180 (2016)

HUm = UmM → U
0 0 0
0 Δm2

21/2E 0
0 0 Δm2

31/2E
U† +

Ve 0 0
0 0 0
0 0 0

Um = Um
0 0 0
0 ΔM2

21/2E 0
0 0 ΔM2

31/2E
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Integration method: rewrite the time-dependent  Schroedinger eq. in dimensionless form

i
d
ds

νe
νμ
ντ

= U
0 0 0
0 α 0
0 0 γ

U† +
A(s) 0 0

0 0 0
0 0 0

νe
νμ
ντ

≡ H(s)
νe
νμ
ντ

Definition of the dimensionless variables:

 
  the unit length

s = x /xu
xu = (2Eℏc)/ |δm2

31 |

 α = δm2
21/ |δm2

31 | γ = δm2
31/ |δm2

31 |

 A(s) = 2EVe(x)/ |δm2
31 | ∝ Ne(x)

≡ [UD1U† + D2]
νe
νμ
ντ

The piece-wise S-matrix formula:  S(Δsi) = e−iΔsiD2(si)Ue−iΔsiD1U†

The S-matrix and probability:  S(s) = Te−i ∫s
0 H(s′ )ds′ 

 Pβ→α = Sαβ(s)
2

An iterations approach:  S(s) =
N

∏
i=1

S(Δsi)
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gm=cm3. Our longitude (W) corresponds to negative values
here. Crustal supplies a program (getCN1point) which for a
given latitude and longitude at the midpoint of a cell, gives
the density of each layer and the bottom of the layer. For all
maps in this paper, the depth, not the sea-level height is used
in the maps.
The Shen-Ritzwoller model is a new (2016) density map

only of the United states in 1=4 × 1=4 degree cells of
latitude and longitude. The density map is divided into
many more layers, than the Crustal map. There are more
than 50 layers.
There is also an older map, PEMC included for historical

reasons. A comparison of the density vs distance results of
each map is shown in Fig. 3 and the numerical results are
given in Tables I and II.

Although the actual situation is more complicated, we
will look at uncertainties in the total amount of matter
passed through by the neutrinos (

R
ρdx) to get an indication

of uncertainties. There are two kinds of uncertainties to be
considered, statistical and systematic. Statistical uncertain-
ties are due to random differences. Sometimes the depths
are near a boundary between two densities. The boundaries
are probably not completely flat and there is some
transition region. In the crustal map there are six points
within about 1.5 km of a depth boundary with an average
change in density of about 4%. If we view this as a random
walk then the standard deviation in the total amount of
matter passed through is 0.43%. Even if all twenty-five path
segments had a 4% uncertainty, the standard deviation in
the total amount of matter passed through would be 0.8%.
The statistical uncertainties are quite small.
There aremanymore layers given for the Shen-Ritzwoller

map and the differences from layer to layer are of the order of
1% (except for the last point, which has 15% differences).
The statistical uncertainties are again small.
The systematic uncertainties are those due to a systematic

error in the density of the layers. One approach is to compare
the mean density for the three maps. The mean density for
PEMC is 2.845 gm=cm3 for Crustal it is 2.817 gm=cm3 and
for Shen-Ritzwoller it is 2.848 gm=cm3. The PEMC map
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FIG. 2. Sea height and negative depth vs distance from
Fermilab for the neutrino beam. The solid line (blue) is the
sea height and the dashed line (red) is the negative depth.
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FIG. 3. Densities vs distance. The dashed line (red) is the
CRUSTAL map, the solid line (black) is the Shen-Ritzwoller
map, and the dotted line (blue) is the old PEMC map.

TABLE I. The columns describe point number, latitude, lon-
gitude, distance along the beam from the start at Fermilab (km),
sea level height (m) (usually negative), and depth, i.e., the
distance below Earth’s crust (m).

Num. Lat. Long. Distance Seaheight Depth

1 41.833 268.272 0.000 228.444 −2.244
2 41.938 268.918 54.379 −5048.751 5310.851
3 42.043 269.563 108.714 −9852.368 10129.269
4 42.148 270.209 163.003 −14184.244 14364.145
5 42.253 270.854 217.240 −18046.264 18360.764
6 42.359 271.500 271.421 −21440.344 21756.344
7 42.464 272.145 325.542 −24368.449 24652.648
8 42.569 272.791 379.599 −26832.572 27128.373
9 42.674 273.436 433.588 −28834.752 29206.652
10 42.779 274.082 487.504 −30377.055 30720.654
11 42.884 274.727 541.344 −31461.594 31838.994
12 42.989 275.373 595.102 −32090.506 32519.906
13 43.094 276.019 648.776 −32265.973 32706.572
14 43.200 276.664 702.362 −31990.203 32440.703
15 43.305 277.310 755.855 −31265.445 31693.746
16 43.410 277.955 809.251 −30093.979 30513.578
17 43.515 278.601 862.547 −28478.111 28977.512
18 43.620 279.246 915.739 −26420.191 26946.592
19 43.725 279.892 968.823 −23922.588 24466.488
20 43.830 280.537 1021.795 −20987.715 21628.814
21 43.936 281.183 1074.652 −17618.004 18252.004
22 44.041 281.828 1127.390 −13815.924 14566.324
23 44.146 282.474 1180.005 −9583.969 10398.169
24 44.251 283.119 1232.494 −4924.664 5860.664
25 44.356 283.765 1284.852 159.438 1468.962

MATTER DENSITY VERSUS DISTANCE FOR THE … PHYSICAL REVIEW D 95, 113004 (2017)

113004-3

Method works well for the  
Earth’s crust variable density:

Figure 5: Comparison of the electron neutrino appearance probability calculated with the iteration
method described in the text and the direct integration method for smoothly varying electron
(matter) density (see text for details). The two curves are artificially separated by 0.005 for a
better view. A muon neutrino beam of 0.8 GeV was used in the calculations.

mass-eigenstate amplitudes with U † (see e.g. Eq. (21)), (ii) freely propagate the mass-eigenstate
amplitudes using Um, (iii) transform the mass-eigenstate amplitudes into flavor amplitudes with
U , and (iv) integrate Eq. (8) over the Dirac delta spikes. For the last step one can assume that in
the vicinity of a Dirac delta spike only the term proportional with A(s) in Eq. (8) survives,

i
d⌫e(s)

ds
= A(s)⌫e(s) . (22)

Given that the Dirac delta function norm in Eq. (12) is proportionate to ⇢ (s/N) = ⇢�si, the
solution to the above equation becomes

⌫e(sa) = e�i�siA(si)⌫e(sb) , (23)

where sb and sa are the s coordinates before and after the delta spike in the (si, si +�si) interval,
and A(si) is calculated with the average electron density of Eq. (13). Therefore, the result of
integrating the full vector of amplitudes over the Dirac delta spike is

0

@
⌫e
⌫µ
⌫⌧

1

A (sa) =

0

@
e�i�siA(si) 0 0

0 1 0
0 0 1

1

A

0

@
⌫e
⌫µ
⌫⌧

1

A (sb) ⌘ Um

0

@
⌫e
⌫µ
⌫⌧

1

A (sb) . (24)

Putting together all the steps of the algorithm described above, one gets for the S-matrix factors
entering Eq. (17)

S(�si) = UA(si)UUmU † , (25)

which are the same as in Eq. (18). This completes the proof that justifies the use of an average
electron density, rather than its large variation around the atomic nuclei. For smooth changes of
the average electron density one can use a typical coarse-graining argument.
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The iterations approach:  Pβ→α = Sαβ(s)
2

 S(s) =
N

∏
i=1

S(Δsi)

 S(Δsi) = UA(si)UUfU†  UA(si) ≡ e−iΔsiD2(si) =
e−iΔsiA(si) 0 0

0 1 0
0 0 1

 Uf ≡ e−iΔsiD1 =
1 0 0
0 e−iΔsiα 0
0 0 e−iΔsiγ

 is enough for good accuracy:N ≈ 15

Using Eqs. (17 - 20) one can iteratively find the S-matrix and the associated probabilities of Eq.
(15). We will call this approach the iterations method. In the proof of Eq. (18) one needs the
transformations forth and back between the flavor amplitudes and the mass eigenstates amplitudes,

⌫↵ =
X

i

U↵i⌫i ; ⌫i =
X

↵

⇣
U †

⌘

i↵

⌫↵ . (21)

The condition for small �si used in Eq. (18) suggests that one needs a large number of iteration to
obtain good accuracy. Our numerical implementation indicates that even 10-15 factors in Eq. (17)
would provide an 0.1% accuracy when compared with the “exact” eigenvalues method. Fig. 4 shows
the di↵erence between the iterations method described above when only 15 iterations are used, and
the exact eigenvalues method solution. Increasing N to 150 reduces the absolute di↵erence to less
than 10�5.

Figure 4: Absolute di↵erence between the probability of electron neutrino appearance calculated
with the iteration method described in the text and the “exact” eigenvalues method. Used was a
matter constant density of 2.8 g/cm3, and a muon neutrino beam of 0.5 GeV.

The iterations method described above works as well for smoothly varying average electron
(matter) densities. Fig. 5 shows the results of the above method (red curve) compared with the
solution obtained by directly integrating Eq. (8) for a varying density through the Earth crust
similar to that described in Ref. [19] (blue curve). Calculated is the electron neutrino appearance
probability for a muon neutrino beam of 0.8 GeV. The two curves are overlapping if the artificial
0.005 shift to the red curved is removed.

The iterations algorithm described above can also be used to understand the results of section
2. To see that, one can consider the electron density in condensed matter composed of N spikes
clustered around the atomic nuclei. One can further approximate the spikes with Dirac delta
functions, which are normalized to unity, multiplied by the constant given in Eq. (12). Then,
when integrating Eq. (8) on each �si segment, one can (i) transform the flavor amplitudes into

7

   Pνμ→νe
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Neutrinos in atomic nuclei
Atomic nucleus is a high electron density medium:  

Consider 2 electrons in the lowest s-orbital of an 
Hydrogen-like atom

Electron density inside nucleus:

Ne(0) ≈
2
π

Z
aB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

Equivalent matter density: ρ =mNNe =1.67×10
6 2
π

Z
53
⎛

⎝
⎜

⎞

⎠
⎟

3

in g / cm2 >> ρSun

ρSuncore ≈150 g / cm
3

Si2 dimer

DFT electron density

2 x 1s el. Hydrogen-like density 

Electron density near nucleus:

Ne(r ) ≈
2
π

Z
aB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3

e−2rZ/aB

On the MSW neutrino mixing e↵ects in atomic weak interactions and double beta decays4
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Figure 1. Electron density, Ne, in Si2 dimer vs the distance between the two Si
nuclei (both in atomic units). The (red) ”+” signs are the results of DFT calculations
[23, 24], and the (blue) continue lines are calculated with Eq. (4).

Neutrino states are used to analyze the matter e↵ects, also known as Mikheyev-

Smirnov-Wolfenstein e↵ects [1]. Neutrino mixing is a↵ected in matter by the neutrino

optical potential. The general relation between the neutrino optical potential (in eV )

and the electron density Ne (in cm
�3) is

Ve = ±
p
2GFNe ⇡ ±7.56⇥ 10�14

mpNe , (3)

where the (minus)plus sign corresponds to (anti)neutrinos, GF is Fermis‘s constant, and

mp is the proton mass (1.67 ⇥ 10�24
g). Above we used Eq. (2.8) of [4], where the

equivalent matter density times the electron fraction Ye was replaced with mpNe. In

atoms, just considering the electron density of two electrons in the lowest 1s state of

a Hydrogen-like atom (the higher s-states contribute very little, / 1/n3, n being the

principal quantum number), one gets

Ne(t) = 1030
2

⇡

✓
Z

53

◆3

e
�2tZ/53 (cm�3), (4)

where Z is the atomic number, and t is in pm (10�12
m). Electron DFT calculations

[23, 24], Fig. 1, show that this approximations is very good at and near the nuclei,

where the main transition take place (see below). These (equivalent) matter densities

at the nucleus for all atoms with atomic number greater than 5 are much larger than

those in the Sun‘s core. For example for atoms with Z ⇡ 53 the electron density at the

nucleus is four order of magnitude larger than that in the Sun‘s core.

Therefore, it should be interesting to investigate the e↵ects of these large electron

densities on the neutrino mixing in atomic weak interactions. To solve this problem
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Matter effects in neutrino oscillations
Electron density unevenly distributed in condensed matter: spikes

DFT calculations of SiO2 electron density (all atomic units)

Average flat 
density used in 
matter effects

log10ρ
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Matter density model

x

• Different spike shapes produce the same 
result 

• The 3D topology of atoms can be 
simulated in 1D with random spikes 

• Actual density is a mixture: 
ρmixed_spikes=0.6ρspikes+0.4ρflat 

• ρave= ρflat =3.8 g/cm3 (PREM)

21
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Are there any effects of the spikes in the electron 
density?

Apparently yes for very long baseline in neutrino oscillations!

Fermilab -> Gran Sasso or 

CERN -> Sanford

mixed-spikes

𝐸𝜈𝜇
= 0.50 𝐺𝑒𝑉

22
Figure 3: Electron neutrino appearance probability, P⌫µ⌫e , for a baseline of 7330 km. The energy
of muon neutrino beam is 0.5 GeV. The green line is given by a constant matter density approach
(⇢ = 3.8 g/cm3), and the black line was obtained integrating Eqs. (8) using a spiked electron
density (see text for details).

Here we propose using the matrix solution to Eq. (11) in a di↵erent way: we divide the s
interval in N small pieces �si (for example equally spaced �si = s/N), for which we consider the
H(si) Hamiltonian constant. With the notation

H(s) ⌘ UD1U
† +D2(s) , (16)

the solution to Eq. (11) can be written as

S(s) =
NY

i=1

S(�si) . (17)

Given that the �si are small, one can show that the matrices S(�si) can be approximated by

S(�si) = e�i�siD2(si)Ue�i�siD1U † . (18)

Moreover, given that matrices D1 and D2 are diagonal then,

e�i�siD2(si) =

0

@
e�i�siA(si) 0 0

0 1 0
0 0 1

1

A ⌘ UA(si) , (19)

and

e�i�siD1 =

0

@
1 0 0
0 e�i�si↵ 0
0 0 e�i�si�

1

A ⌘ Um . (20)

6

i
d
ds

νe
νμ
ντ

= U
0 0 0
0 α 0
0 0 γ

U† +
A(s) 0 0

0 0 0
0 0 0

νe
νμ
ντ

≡ H(s)
νe
νμ
ντ

   Ve(x) = ± 1.26 × 10−37Ne(x) (cm−3)

 A(s) = 2EVe(x)/ |δm2
31 | ∝ Ne(x)

 Pνμ→νe
= νe

2

   Pνμ→νe

   flatPνμ→νe
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Integration method: rewrite the time- dependent  Schroedinger eq. in dimensionless form

Consider  and  near electron density spikes:Δsi ≪ 1 A(s) = ΔsiĀ(si)δ(s)

i
d
ds

νe
νμ
ντ

= U
0 0 0
0 α 0
0 0 γ

U† +
A(s) 0 0

0 0 0
0 0 0

νe
νμ
ντ

≡ H(s)
νe
νμ
ντ

≡ [UD1U† + D2]
νe
νμ
ντ

 Pβ→α = Sαβ(s)
2

 S(s) =
N

∏
i=1

S(Δsi)
Therefore, the piece-wise  

S-matrix formula is the same:  S(Δsi) = UA(si)UUfU†

 i
dνe(s)

ds
= A(s)νe(s)  ⟹ νe(sa) = e−iΔsi Ā(si)νe(sb)

The contribution to  through 

the Dirac delta potential:

S(Δsi)  UA(si) ≡ e−iΔsiD2(si) =
e−iΔsi Ā(si) 0 0

0 1 0
0 0 1
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Conclusions
• We presented a fast and reliable algorithm to calculate the neutrino 

oscillation probabilities through matter of varying density (more 
info in Universe 6, 16 (2020)). 
• The algorithm was extended to the case where the sterile 

neutrinos are present. 
• We use this algorithm to show that the electron density spikes near 

the atomic nuclei can be treated as a local average density.  
• This statement can be extended to the neutron density spikes 

contributing to VN (needed if the sterile neutrinos are present). 
• Related: we showed (EPJA 56, 39 (2020)) that the large neutrino 

optical potential due to the electron density spikes in the atomic 
nuclei does not affect the neutrinoless double-beta probability for 
the mass mechanism.
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