Neutrino properties and double beta decay

Mihai Horoi
Central Michigan University (CMU)

CMU Deliverables

Peer-reviewed journals:

1. F. Ahmed and M. Horoi, "Interference Effects for $0 v \beta \beta$ Decay in the Left-Right Symmetric Model", Phys. Rev. C 101, 035504 (2020), https://doi.org/10.1103/PhysRevC.101.035504.
2. M. Horoi, "On the MSW-like neutrino mixing effects in atomic weak interactions and double beta decays", EPJA 56, 39 (2020), https://doi.org/10.1140/epja/s10050-020-00042-x .
3. C. F. Jiao, M. Horoi, and A. Neacsu, "Neutrinoless double-decay of ${ }^{124} \mathrm{Sn},{ }^{130} \mathrm{Te}$, and ${ }^{136} \mathrm{Xe}$ in the Hamiltonian-based generatorcoordinate method", Phys. Rev. C 98, 064324, https://doi.org/10.1103/PhysRevC.98.064324.
4. M. Horoi and A. Neacsu, "Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-beta decay", Phys. Rev. C 98, 035502 (2018), https://doi.org/10.1103/PhysRevC.98.035502.
5. F. Ahmed, A. Neacsu, and M. Horoi, "Interference between light and heavy neutrinos for $0 v \beta \beta$ decay in the left-right symmetric model", Physics Letters B 769, 299-304 (2017), https://doi.org/10.1016/j.physletb.2017.03.066.
6. A. Neacsu and M. Horoi, "Shell Model Studies of Competing Mechanisms to the Neutrinoless Double-Beta Decay in ${ }^{124} \mathrm{Sn},{ }^{130} \mathrm{Te}$, and ${ }^{136} \mathrm{Xe"}$ ", Advances in High Energy Physics 2016, 1903767 (2016), https://doi.org/10.1155/2016/1903767.

Peer-reviewed Proceedings:
7. M. Horoi, "Neutrinoless double beta decay of atomic nuclei", AIP Proceedings 2165, 020012 (2019).
8. M. Horoi, "Nuclear Structure for Double Beta Decay", in 12th INTERNATIONAL SPRING SEMINAR ON NUCLEAR PHYSICS, Ischia, May 15-19, 2017, volume 966 of J. Phys.: Conf. Series, page 012009, (2018), https://doi.org/10.1088/1742-6596/966/1/012009.
9. M. Horoi, "Towards a complete description of the neutrinoless double beta decay", in Matrix Elements for the Double beta decay EXperiments: MEDEX'17, Prague, June 1-6, 2017, volume 1894 of AIP Conference Proceedings, page 020011, (2017), https://doi.org/ 10.1063/1.5007636.
3. C. F. Jiao, M. Horoi, and A. Neacsu, "Neutrinoless double-decay of ${ }^{124} \mathrm{Sn},{ }^{130} \mathrm{Te}$, and ${ }^{136} \mathrm{Xe}$ in the Hamiltonianbased generator-coordinate method", Phys. Rev. C 98, 064324, https://doi.org/10.1103/PhysRevC.98.064324.

4. M. Horoi and A. Neacsu, "Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-beta decay", Phys. Rev. C 98, 035502 (2018), https://doi.org/10.1103/ PhysRevC.98.035502.

(a) The generic $0 \nu \beta \beta$ decay diagram at the quark-level.

(c) The long-range part of the $0 \nu \beta \beta$ diagram.
(b) Light left-handed neutrino exchange diagram.

(d) The short-range part of the $0 \nu \beta \beta$ diagram.

\qquad

$$
\begin{aligned}
\mathcal{L}_{6} & =\frac{G_{F}}{\sqrt{2}}\left[j_{V-A}^{\mu} J_{V-A, \mu}^{\dagger}+\sum_{\alpha, \beta}^{*} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger}\right] \\
\mathcal{L}_{9} & =\frac{G_{F}^{2}}{2 m_{p}}\left[\varepsilon_{1} J J j+\varepsilon_{2} J^{\mu \nu} J_{\mu \nu} j+\varepsilon_{3} J^{\mu} J_{\mu} j\right. \\
& \left.+\varepsilon_{4} J^{\mu} J_{\mu \nu} j^{\nu}+\varepsilon_{5} J^{\mu} J j_{\mu}\right],
\end{aligned}
$$

(e) The pion-neutrino
long-range diagram.

$$
\mathcal{E}_{2-7}=\left\{\epsilon_{V-A}^{V+A}, \quad \epsilon_{V+A}^{V+A}, \quad \epsilon_{S \pm P}^{S+P}, \quad \epsilon_{T}^{\overline{T P} R}, \eta_{\pi \nu}\right\}
$$

$$
\mathcal{E}_{8-15}=\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}^{L L z(R R z)}, \varepsilon_{3}^{L R z(R L z)}, \varepsilon_{4}, \varepsilon_{6}, \eta_{1 \pi}, \eta_{2 \pi}\right\}
$$

4. M. Horoi and A. Neacsu, "Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-beta decay", Phys. Rev. C 98, 035502 (2018), https://doi.org/10.1103/ PhysRevC.98.035502.

PHYSICAL REVIEW D 92, 036005 (2015)

(a)

(c)

$$
\eta_{N} \propto \frac{1}{m_{W_{R}}^{4} m_{N}}
$$

(b)

(d)

$$
\begin{array}{lr}
m_{e} \bar{\epsilon}_{5}=\frac{g^{2}(y v)^{2}}{\Lambda_{5}}, & \frac{G_{F} \bar{\epsilon}_{7}}{\sqrt{2}}=\frac{g^{3}(y v)}{2\left(\Lambda_{7}\right)^{3}} \\
\frac{G_{F}^{2} \bar{\epsilon}_{9}}{2 m_{p}}=\frac{g^{4}}{\left(\Lambda_{9}\right)^{5}}, & \frac{G_{F}^{2} \bar{\epsilon}_{11}}{2 m_{p}}=\frac{g^{6}(y v)^{2}}{\left(\Lambda_{11}\right)^{7}}
\end{array}
$$

TABLE VIII. The BSM effective scale (in GeV) for different dimension-D operators at the present ${ }^{136} \mathrm{Xe}$ half-life limit $\left(\Lambda_{D}^{0}\right)$ and for $T_{1 / 2} \approx 1.1 \times 10^{28}$ years $\left(\Lambda_{D}\right)$.

\mathcal{O}_{D}	$\bar{\epsilon}_{D}$	$\Lambda_{D}^{0}(y=1)$	$\Lambda_{D}^{0}\left(y=y_{e}\right)$	$\Lambda_{D}\left(y=y_{e}\right)$
\mathcal{O}_{5}	$2.8 \cdot 10^{-7}$	$2.12 \cdot 10^{14}$	1904	19044
\mathcal{O}_{7}	$2.0 \cdot 10^{-7}$	$3.75 \cdot 10^{4}$	541	1165
\mathcal{O}_{9}	$1.5 \cdot 10^{-7}$	$2.47 \cdot 10^{3}$	2470	3915
\mathcal{O}_{11}	$1.5 \cdot 10^{-7}$	$1.16 \cdot 10^{3}$	31	43

$$
g \approx 1 \quad v=174 \mathrm{GeV} \quad y_{e}=3 \times 10^{-6} \text { electron mass Yukawa }
$$

$$
\mathcal{L}_{D}=\frac{g}{\left(\Lambda_{D}\right)^{D-4}} \mathcal{O}_{D}
$$

4. M. Horoi and A. Neacsu, "Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-beta decay", Phys. Rev. C 98, 035502 (2018), https://doi.org/10.1103/ PhysRevC.98.035502.
One coupling dominance: which one? $\quad\left[T_{1 / 2}^{0 \nu}\right]^{-1}=g_{A}^{4}\left[\sum_{i}\left|\mathcal{E}_{i}\right|^{2} \mathcal{M}_{i}^{2}+\operatorname{Re}\left[\sum_{i \neq j} \hat{\vartheta} \hat{\forall} \mathcal{M}_{i j}\right]\right]$

$\mathrm{T}\left[{ }^{76} \mathrm{Ge}\right] / \mathrm{T}\left[{ }^{\mathrm{A}} \mathrm{Z}\right]$

CMU Hamiltonians

SuperNEMO

6. A. Neacsu and M. Horoi, "Shell Model Studies of Competing Mechanisms to the Neutrinoless Double-Beta Decay in ${ }^{124}$ Sn, ${ }^{130} \mathrm{Te}$, and ${ }^{136} \mathrm{Xe} "$, Advances in High Energy Physics 2016, 1903767 (2016), https://doi.org/10.1155/2016/1903767.
M. Horoi and A. Neacsu, "Analysis of mechanisms that could contribute to neutrinoless double-beta decay ", Phys. Rev D 93, 113014 (2016).
λ and η mechanisms (${ }^{82} \mathrm{Se}$): look for green
$<\lambda>$ dominates

$<\eta>$ dominates

$$
\frac{2 \mathrm{~d} W_{0^{+} \rightarrow 0^{+}}^{0 \nu}}{\mathrm{~d}(\Delta t)}=\frac{2 a_{0 \nu}}{\left(m_{e} R\right)^{2}} \frac{\omega_{0 \nu}(\Delta t)}{m_{e} c^{2}} A(\Delta t)
$$

$$
t=\varepsilon_{e 1}-\varepsilon_{e 2}
$$

1. F. Ahmed and M. Horoi, "Interference Effects for $0 v \beta \beta$ Decay in the Left-Right Symmetric Model", Phys. Rev. C 101, 035504 (2020), https://doi.org/10.1103/PhysRevC.101.035504.
2. F. Ahmed, A. Neacsu, and M. Horoi, "Interference between light and heavy neutrinos for $0 v \beta \beta$ decay in the left-right symmetric model", Physics Letters B 769, 299-304 (2017), https://doi.org/10.1016/j.physletb.2017.03.066.

TC-May20
2. M. Horoi, "On the MSW-like neutrino mixing effects in atomic weak interactions and double beta decays", EPJA 56, 39 (2020), https://doi.org/10.1140/epja/s10050-020-00042-x .
M. Horoi and A Zettel, "Effects of Atomic-Scale Electron Density Profile and a Fast and Efficient Iteration Algorithm for Matter Effect of Neutrino Oscillation", Universe 6, 16 (2020).

Atomic nucleus is a high electron density medium:

Consider 2 electrons in the lowest s-orbital of an Hydrogen-like atom
Electron density near nucleus:

$$
N_{e}(r) \approx \frac{2}{\pi}\left(\frac{Z}{a_{B}}\right)^{3} e^{-2 r Z / a_{B}}
$$

Electron density inside nucleus:

$$
\begin{aligned}
& N_{e}(0) \approx \frac{2}{\pi}\left(\frac{Z}{a_{B}}\right)^{3} \\
& \rho_{\text {Suncore }} \approx 150 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Equivalent matter density: $\rho=m_{N} N_{e}=1.67 \times 10^{6} \frac{2}{\pi}\left(\frac{Z}{53}\right)^{3}$ in $g / \mathrm{cm}^{2} \gg \rho_{\text {Sun }}$
2. M. Horoi, "On the MSW-like neutrino mixing effects in atomic weak interactions and double beta decays", EPJA 56, 39 (2020), https://doi.org/10.1140/epja/s10050-020-00042-x .
M. Horoi and A Zettel, "Effects of Atomic-Scale Electron Density Profile and a Fast and Efficient Iteration Algorithm for Matter Effect of Neutrino Oscillation", Universe 6, 16 (2020).
Neutrinoless double beta decay in vacuum

$$
\begin{array}{cc}
A_{0 \beta \beta} \propto N P=\langle 0| T\left[\psi_{e L}\left(x_{1}\right) \psi_{e L}^{T}\left(x_{2}\right)\right]|0\rangle & \psi_{e}(x)=\sum_{a=1}^{N(3)} U_{e a} \psi_{a}(x) \\
N P=\sum_{a=1}^{3} U_{e a}^{2}\langle 0| T\left[\psi_{a L}\left(x_{1}\right) \psi_{a L}^{T}\left(x_{2}\right)\right]|0\rangle & \\
=\sum_{a=1}^{3} U_{e a}^{2}\left[-i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{m_{a} e^{-i p\left(x_{1}-x_{2}\right)}}{p^{2}-m_{a}^{2}+i \epsilon} P_{L} \mathcal{C}\right] & \frac{1}{T_{1 / 2}}=G(Z, Q)\left|M_{0 \nu}\right|^{2}\left|\sum_{a=1}^{3} U_{e a}^{2} m_{a}\right|^{2} / m_{e}^{2} \\
P_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) & \hat{\psi}(x)=C \psi^{*}(x)
\end{array}
$$

$P_{L} C$ product is further used to process the electron current, and one finally gets:
Neutrinoless double beta decay of atomic nuclei

- the in-matter propagator still contains the vacuum PMNS matrix and masses!
- The formalism allows the extension of this result if sterile neutrinos are present $(a=1 \ldots 4,(5))$

In atomic nuclei $N P=$ In vacuum $N P$

- The propagators for long range $0 v \beta \beta$ diagrams seem Vacuum result stands : $m_{\beta \beta}=\left|\sum_{a=1}^{3} U_{e a}^{2} m_{a}\right|$ to remain unchanged (work not finished yet)

2. M. Horoi, "On the MSW-like neutrino mixing effects in atomic weak interactions and double beta decays", EPJA 56, 39 (2020), https://doi.org/10.1140/epja/s10050-020-00042-x .
M. Horoi and A Zettel, "Effects of Atomic-Scale Electron Density Profile and a Fast and Efficient Iteration Algorithm for Matter Effect of Neutrino Oscillation", Universe 6, 16 (2020).

3. M. Horoi, "On the MSW-like neutrino mixing effects in atomic weak interactions and double beta decays", EPJA 56, 39 (2020), https://doi.org/10.1140/epja/s10050-020-00042-x .
M. Horoi and A Zettel, "Effects of Atomic-Scale Electron Density Profile and a Fast and Efficient Iteration Algorithm for Matter Effect of Neutrino Oscillation", Universe 6, 16 (2020).

$$
m_{\beta \beta}=\sum_{k=0}^{N} U_{e k}^{2} m_{k}
$$

Do we really know $U_{e k}$?

DUNE/LBNF

2

Sanford

Underground
Research
Facility

EXISTINC
LABS
density vs distance for 3 density maps
Neutrino oscillations through matter
Matter acts as an optical potential
Goals: $\quad U_{P M N S}\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{C P}\right)$

$$
\left(m_{1}, m_{2}, m_{3}\right) v s\left(m_{3}, m_{1}, m_{2}\right)
$$

TC-May20
B. Roe, Phys. Rev. D 95113004 (2017)

Neutrinos traveling in matter:

Coupled Dirac equations for neutrino mass-eigenstates:

$$
i \frac{d}{d t}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)=\left[\left(\begin{array}{ccc}
p_{x} \alpha_{x}+m_{1} \beta & 0 & 0 \\
0 & p_{x} \alpha_{x}+m_{2} \beta & 0 \\
0 & 0 & p_{x} \alpha_{x}+m_{3} \beta
\end{array}\right)+U^{\dagger}\left(\begin{array}{ccc}
V_{e}(x)+V_{N} & 0 & 0 \\
0 & V_{N} & 0 \\
0 & 0 & V_{N}
\end{array}\right)\right]\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

In-matter neutrino optical potential:

$$
\begin{aligned}
& V_{e}(e V)= \pm \sqrt{2} G_{F} N_{e} \approx \pm 1.26 \times 10^{-37} N_{e}\left(\mathrm{~cm}^{-3}\right) \\
& V_{N}(e V) \approx \mp G_{F} N_{n} / \sqrt{2} \approx \mp 6.3 \times 10^{-38} N_{n}\left(\mathrm{~cm}^{-3}\right)
\end{aligned}
$$

Reduction to a "time-dependent" Schroedinger-like equation for amplitudes:

$$
i \frac{d}{d x}\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} / 2 E & 0 \\
0 & 0 & \Delta m_{31}^{2} / 2 E
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
V_{e}(x) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \equiv H(x)\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Condition:

$$
\lambda \ll|V(x) /(d V / d x)|
$$

Amplitudes:

$$
\psi_{f}=\sum_{a=1,2,3} \psi_{a}=\sum_{a=1,2,3} v_{f, a} \phi_{a}
$$

Neutrinos traveling in matter:

Constant electron density: the eigenvalues method

$$
H U^{m}=U^{m} M \rightarrow\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} / 2 E & 0 \\
0 & 0 & \Delta m_{31}^{2} / 2 E
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
V_{e} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right] U^{m}=U^{m}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta M_{21}^{2} / 2 E & 0 \\
0 & 0 & \Delta M_{31}^{2} / 2 E
\end{array}\right)
$$

The flavor oscillation probability becomes:

$$
P_{\alpha \rightarrow \beta}=\delta_{\alpha \beta}-4 \sum_{i>j} \operatorname{Re}\left(U^{m_{\alpha i}^{*}} U^{m}{ }_{\beta i} U^{m}{ }_{\alpha j} U^{m_{\beta j}^{*}}\right) \sin ^{2}\left(\frac{\Delta M_{i j}^{2} L}{4 E}\right)+2 \sum_{i>j} \operatorname{Im}\left(U^{m_{\alpha i}^{*}} U^{m}{ }_{\beta i} U^{m}{ }_{\alpha j} U^{m_{\beta j}^{*}}\right) \sin ^{2}\left(\frac{\Delta M_{i j}^{2} L}{2 E}\right)
$$

Take the case of two flavors: $\quad U=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right) \rightarrow U^{m}=\left(\begin{array}{cc}\cos \theta_{m} & \sin \theta_{m} \\ -\sin \theta_{m} & \cos \theta_{m}\end{array}\right)$

$$
\begin{gathered}
\Delta M_{21}^{2}=\Delta m_{21}^{2} \sqrt{\left(\cos 2 \theta-2 V_{e} E / \Delta m_{21}^{2}\right)^{2}+\sin ^{2} 2 \theta} \quad \sin 2 \theta_{m}=\frac{\Delta m_{21}^{2}}{\Delta M_{21}^{2}} \sin 2 \theta \\
P_{e \rightarrow \mu, \tau}=\sin ^{2} 2 \theta_{m} \sin ^{2}\left(\frac{\Delta M_{21}^{2} L}{4 E}\right)
\end{gathered}
$$

Neutrinos traveling in matter:

Constant electron density: the eigenvalues method

$$
H U^{m}=U^{m} M \rightarrow\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} / 2 E & 0 \\
0 & 0 & \Delta m_{31}^{2} / 2 E
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
V_{e} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right] U^{m}=U^{m}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta M_{21}^{2} / 2 E & 0 \\
0 & 0 & \Delta M_{31}^{2} / 2 E
\end{array}\right)
$$

3 flavors: no compact solution
Perturbations approach: to get an idea here is one of them

- H. Minakata and S. J. Parke, JHEP 01, 180 (2016)

$$
\begin{align*}
& P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\delta_{\alpha \beta} \\
+ & 4\left[\left\{A_{+-}^{\alpha \beta}\right\} s_{\phi}^{2} c_{\phi}^{2}+\epsilon\left\{B_{+-}^{\alpha \beta}\right\}\left(J_{r} \cos \delta\right) \frac{\left(\Delta m_{\mathrm{ren}}^{2}\right)^{2}\left\{\left(\lambda_{+}-\lambda_{-}\right)-\left(\Delta m_{\mathrm{ren}}^{2}-a\right)\right\}}{\left(\lambda_{+}-\lambda_{-}\right)^{2}\left(\lambda_{+}-\lambda_{0}\right)}\right] \sin ^{2} \frac{\left(\lambda_{+}-\lambda_{-}\right) L}{4 E} \\
+ & 4\left[\left\{A_{+0}^{\alpha \beta}\right\} c_{\phi}^{2}+\epsilon\left\{B_{+0}^{\alpha \beta}\right\}\left(J_{r} \cos \delta / c_{13}^{2}\right) \frac{\Delta m_{\mathrm{ren}}^{2}\left\{\left(\lambda_{+}-\lambda_{-}\right)-\left(\Delta m_{\mathrm{ren}}^{2}+a\right)\right\}}{\left(\lambda_{+}-\lambda_{-}\right)\left(\lambda_{+}-\lambda_{0}\right)}\right] \sin ^{2} \frac{\left(\lambda_{+}-\lambda_{0}\right) L}{4 E} \\
+ & 4\left[\left\{A_{-0}^{\alpha \beta}\right\} s_{\phi}^{2}+\epsilon\left\{B_{-0}^{\alpha \beta}\right\}\left(J_{r} \cos \delta / c_{13}^{2}\right) \frac{\Delta m_{\mathrm{ren}}^{2}\left\{\left(\lambda_{+}-\lambda_{-}\right)+\left(\Delta m_{\mathrm{ren}}^{2}+a\right)\right\}}{\left(\lambda_{+}-\lambda_{-}\right)\left(\lambda_{-}-\lambda_{0}\right)}\right] \sin ^{2} \frac{\left(\lambda_{-}-\lambda_{0}\right) L}{4 E} \\
+ & 8 \epsilon J_{r} \frac{\left(\Delta m_{\mathrm{ren}}^{2}\right)^{3}}{\left(\lambda_{+}-\lambda_{-}\right)\left(\lambda_{+}-\lambda_{0}\right)\left(\lambda_{-}-\lambda_{0}\right)} \sin \frac{\left(\lambda_{+}-\lambda_{-}\right) L}{4 E} \sin \frac{\left(\lambda_{-}-\lambda_{0}\right) L}{4 E} \\
& \times\left[\left\{C^{\alpha \beta}\right\} \cos \delta \cos \frac{\left(\lambda_{+}-\lambda_{0}\right) L}{4 E}+\left\{S^{\alpha \beta}\right\} \sin \delta \sin \frac{\left(\lambda_{+}-\lambda_{0}\right) L}{4 E}\right], \quad(3.17 \tag{3.17}
\end{align*}
$$

Neutrinos traveling in matter:

Integration method: rewrite the time-dependent Schroedinger eq. in dimensionless form

$$
i \frac{d}{d s}\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \gamma
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
A(s) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \equiv H(s)\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \equiv\left[U D_{1} U^{\dagger}+D_{2}\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Definition of the dimensionless variables: $\quad \alpha=\delta m_{21}^{2} /\left|\delta m_{31}^{2}\right| \quad \gamma=\delta m_{31}^{2} /\left|\delta m_{31}^{2}\right|$

$$
\begin{aligned}
& s=x / x_{u} \\
& x_{u}=(2 E \hbar c) /\left|\delta m_{31}^{2}\right| \text { the unit length } \quad A(s)=2 E V_{e}(x) /\left|\delta m_{31}^{2}\right| \propto N_{e}(x)
\end{aligned}
$$

The S-matrix and probability:

$$
\xrightarrow{S(s)=T e^{-i \int_{0}^{s} H\left(s^{\prime}\right) d s^{\prime}}} P_{\beta \rightarrow \alpha}=\left|S_{\alpha \beta}(s)\right|^{2}
$$

An iterations approach: $\quad S(s)=\prod_{i=1}^{N} S\left(\Delta s_{i}\right)$
The piece-wise S-matrix formula:

$$
S\left(\Delta s_{i}\right)=e^{-i \Delta s_{i} D_{2}\left(s_{i}\right)} U e^{-i \Delta s_{i} D_{1}} U^{\dagger}
$$

Neutrinos traveling in matter:

The iterations approach:

$$
S(s)=\prod_{i=1}^{N} S\left(\Delta s_{i}\right)
$$

$$
P_{\beta \rightarrow \alpha}=\left|S_{\alpha \beta}(s)\right|^{2}
$$

$$
S\left(\Delta s_{i}\right)=U_{A}\left(s_{i}\right) U U_{f} U^{\dagger}
$$

$$
U_{A}\left(s_{i}\right) \equiv e^{-i \Delta s_{i} D_{2}\left(s_{i}\right)}=\left(\begin{array}{ccc}
e^{-i \Delta s_{i} A\left(s_{i}\right)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad U_{f} \equiv e^{-i \Delta s_{i} D_{1}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-i \Delta s_{i} \alpha} & 0 \\
0 & 0 & e^{-i \Delta s_{\gamma} \gamma}
\end{array}\right)
$$

Method works well for the
$N \approx 15$ is enough for good accuracy: $\quad P_{\nu_{\mu} \rightarrow \nu_{e}}$

Neutrinos in atomic nuclei

Atomic nucleus is a high electron density medium:
Consider 2 electrons in the lowest s-orbital of an Hydrogen-like atom

Electron density near nucleus.
$N_{e}(r) \approx \frac{2}{\pi}\left(\frac{Z}{a_{B}}\right)^{3} e^{-2 r Z a_{B}}$

Electron density inside nucleus.

$$
N_{e}(0) \approx \frac{2}{\pi}\left(\frac{Z}{a_{B}}\right)^{3}
$$

$\rho_{\text {sincore }} \approx 150 \mathrm{~g} / \mathrm{cm}^{3}$
Equivalent matter density: $\rho=m_{N} N_{e}=1.67 \times 10^{6} \frac{2}{\pi}\left(\frac{Z}{53}\right)^{3}$ in $\mathrm{g} / \mathrm{cm}^{2} \gg \rho_{\text {sin }}$

$2 \times 1 \mathrm{sel}$. Hydrogen-like density

Matter effects in neutrino oscillations

Electron density unevenly distributed in condensed matter: spikes
DFT calculations of SiO_{2} electron density (all atomic units)

Average flat density used in matter effects

Matter density model

- Different spike shapes produce the same result
- The 3D topology of atoms can be simulated in 1D with random spikes
- Actual density is a mixture:
$\rho_{\text {mixed_spikes }}=0.6 \rho_{\text {spikes }}+0.4 \rho_{\text {flat }}$
- $\rho_{\text {ave }}=\rho_{\text {flat }}=3.8 \mathrm{~g} / \mathrm{cm}^{3}$ (PREM)

Are there any effects of the spikes in the electron density?

Apparently yes for very long baseline in neutrino oscillations!

$$
E_{\nu_{\mu}}=0.50 \mathrm{GeV}
$$

$$
i \frac{d}{d s}\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left[U\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \gamma
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
A(s) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \equiv H(s)\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

3-neutrino oscillations

$$
A(s)=2 E V_{e}(x) /\left|\delta m_{31}^{2}\right| \propto N_{e}(x)
$$

$$
V_{e}(x)= \pm 1.26 \times 10^{-37} N_{e}(x)\left(\mathrm{cm}^{-3}\right)
$$

$$
P_{\nu_{\mu} \rightarrow \nu_{e}}=\left|\nu_{e}\right|^{2}
$$

$\longleftarrow P_{\nu_{\mu} \rightarrow \nu_{e}}$ mixed-spikes
$\longleftarrow P_{\nu_{\mu} \rightarrow \nu_{e}}$ flat
-> Gran Sasso or
CERN -> Sanford

Neutrinos traveling in matter:

Integration method: rewrite the time- dependent Schroedinger eq. in dimensionless form

$$
i \frac{d}{d s}\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left[U\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \gamma
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
A(s) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \equiv H(s)\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right) \equiv\left[U D_{1} U^{\dagger}+D_{2}\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Consider $\Delta s_{i} \ll 1$ and $A(s)=\Delta s_{i} \bar{A}\left(s_{i}\right) \delta(s)$ near electron density spikes:

$$
i \frac{d \nu_{e}(s)}{d s}=A(s) \nu_{e}(s) \quad \Longrightarrow \quad \nu_{e}\left(s_{a}\right)=e^{-i \Delta s_{i} \bar{A}\left(s_{i}\right)} \nu_{e}\left(s_{b}\right)
$$

The contribution to $S\left(\Delta s_{i}\right)$ through the Dirac delta potential:

$$
U_{A}\left(s_{i}\right) \equiv e^{-i \Delta s_{i} D_{2}\left(s_{i}\right)}=\left(\begin{array}{ccc}
e^{-i \Delta s_{i} \bar{A}\left(s_{i}\right)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Therefore, the piece-wise S-matrix formula is the same:

$$
S\left(\Delta s_{i}\right)=U_{A}\left(s_{i}\right) U U_{f} U^{\dagger}
$$

$$
S(s)=\prod_{i=1}^{N} S\left(\Delta s_{i}\right)
$$

Conclusions

- We presented a fast and reliable algorithm to calculate the neutrino oscillation probabilities through matter of varying density (more info in Universe 6, 16 (2020)).
- The algorithm was extended to the case where the sterile neutrinos are present.
- We use this algorithm to show that the electron density spikes near the atomic nuclei can be treated as a local average density.
- This statement can be extended to the neutron density spikes contributing to V_{N} (needed if the sterile neutrinos are present).
- Related: we showed (EPJA 56, 39 (2020)) that the large neutrino optical potential due to the electron density spikes in the atomic nuclei does not affect the neutrinoless double-beta probability for the mass mechanism.

