. Harmonic oscillator-based effective theory (HOBET) | .

Al

—_—
% 2] i s Review of its implemBliiation ™« = — = T
. " ..‘ - -
; . Two. new questions ac#rqssed et 7 RS,
I. 2 & » * -
. ! bl

= Pe .“f’ﬁ'

R

: ‘ /\
i reroeeer ‘m - '
.

Office of
Science

U.S. DEPARTMENT OF ENERGY




0 For decades we have thought about effective nuclear theory: the division of
the Hilbert space into an included space P and an excluded space Q, and the
determination of a feff in P (including models liked the SM)

0 The first catastrophic failure of this theory was recognized in the early 1970s:
perturbative efforts to generate H°" derailed by intruder states

4hw intruder state
(dhw|H |2hw) >> A E

Nonperturbative corrections to eft

e.g., P=0+2hw Shucan andWeidenmuIIer
Barrett and Kirson



There is now a major program based on a nonperturbative approach: ET

0 Lots of wonderful things could be said about this approach ... so it is admittedly
unfair to focus on the negatives ... but ...
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0 Lots of wonderful things could be said about this approach ... so it is admittedly
unfair to focus only on the negatives ... but ...

T oo UV: QCD
. QCD is feed in
E =1 GeV NN potential y via experiment:
' : phase shifts:
EU momentum basis
4V »
softened,
e.g.,VIOW-k .
E =05 GeV . more universal form:
. momentum basis
gap remains:
challenging Heff calculation
v
the unique discrete,
E ~ hw SM translationally
P space invariant basis
is the HO




HOBET is intended as a direct reduction from QCD

l) Simplify to a true ET

UV: QCD
E =00 Q
v
Build the ET here;
E ~ hw SM « the SM cutoffs are the EFT cutoffs;
P space QCD is feed in via experiment: phase shifts;
phase shifts fix the LECs
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HOBET was design to simplify such procedures

UV: QCD

SM
P space

What is the best starting point for building
such a theory!?

|) requires a theory that applies equally
to bound states and continuum states

2) to use phase shifts, must have a theory
that relates H°" to d(E)

Build the ET here;
the SM cutoffs are the EFT cutoffs;

QCD is feed in via experiment: phase shifts;
phase shifts fix the LECs



Key ideas of HOBET

* Utilize the unique discrete basis that allows one to preserve translational invariance -
critical to any true EFT

* Use the energy-dependent Bloch-Horowitz equation
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X/ 7/
A X X

X/
L X4

X/
2 %4

\/
0’0

yields exact eigenvalues, exact projections of true wave functions

no intruder-state problem: an infinite number of solution from a finite P
analytically continuous in E: applies equally to bound and continuum states
allows one to make precise connections between LECs and phase shifts,
many of which evolve rapidly with E

the “have your cake and eat it to” theorem: the BH equation can be
reorganized so the the LECs are energy independent

exact cutoff independence: no dependence on the choice of b, A

* The theory is systematic and rapidly convergent at nuclear momentum scales

* Builds in chiral symmetry in a much more elegant way: avoids the tedious short-range
pionic expansions of standard chiral EFT



0 Nonrelativistic effective theory that is formulated in a HO P-space:
discrete but translationally invariant

0 Analytically continuous in E: applies equally to bound states or reactions

0 Based on a reorganization of the Bloch-Horowitz equation (WH + Tom Luu).
Here E, |¥) are the full solution,

H=T+V

PH P|U) = EP|T)

1
H" = H+H H=T" 4y
+ E—QHQ +

the reorganization:



Any HO-based EFT must have this form of the

effective kinetic energy operator
p_GEINEESE BE § a - I§

T/E T/E E/E-QT QT/E E/E-QT E/E-TQ T/E

Very energy dependent - but can be rewritten in terms of the free Green’s function E/E-T,
known analytically, at the cost of a matrix inversion in P

;Mi - E N Very energy dependent

- E/E-TQ E/E-QT -

But not this - only weakly E-dependent >O< 95% of the energy dependence removed

This is the quantity that can be expanded in short range operators



'

VO/E Vsr/E Vsr/E E/E-QT  QVsr/E
Vsr/E Vsr/E E/E-QT QVO/E

Were we were working in a potential theory, Vsr would be the short-range nuclear
potential - which we can expand in HOBET’s pion-less and pion-full operators

Vsr is slightly energy dependent - 5% of the original energy dependence remains after this
reoganization: Easily absorbed into the momentum-dependence of HOBET’s contact-gradient

operator expansion

Consequently H°"(E) can be expressed in terms of a single set of energy-independent LECs




UV-IR Separation and Energy-Dependence

0 Nuclear ground states are a compromise between the UV and the IR: kinetic
energy is minimized by delocalization; potential energy is minimized by
localizing at scales ~ 1/m.,

0 Corrections due to omitted IR and UV physics are roughly comparable in
importance — but differ greatly in their consequences for ET

Energy

Ql (UV) p Q2 (IR)

(large-scale
direct diagonalization)

Distance



Ql (UV)

No Scale Separation

AFE ~ 2hw

T

P

(large-scale
direct diagonalization)

Q2 (IR)

Distance

Coupling between P and

Q2 is via the K.E. operator

§2connects neighboring
shells

this means small energy
denominators, highly energy
dependent corrections

must be treated - but can be
quasi-analytically

IR propagation enhanced
because nuclei barely bound



Large Scale Separation

AFE ~ GeV

\/

Ql (UV)

N/

P

(large-scale
direct diagonalization)

Q2 (IR)

Distance

Coupling between P
and QI is via
short-range strong
interactions

Large energy
denominators: energy
independent
corrections

Can be treated by
a standard short
range expansion



0 Build the effective theory:

V+V Gon Qv—>{

NEAR IR

Vs
Vit + Vs

FAR IR
TQ
1/E

%

ffﬁ::(;TQ 1ﬂ+JT§%TK+‘/%—VQ;QBﬂQV'(;QT

pionless
pionful no reference to SR potential remains

FAR IR

NEAR IR uv




Fixing the LECs: HOBET’s short-range expansion is one in HO quanta:

(al,al, al): a; = ! 0 + 7; a; (.2 + 7
€T y? z (] \/§ a’]“i () 1 \/5 ari 7

1 -
r = \/_b(rl—rg) a}Lw:eM-aT an = (—D)Ma_yy

0 From these operators one can construct nodal and angular momentum
raising and lowering operators

acantm)=—-2+/(n—1)(n+0—-1/2) |n—1¢m)

! Lln+£¢+1
[Bede- 8], b, = (1)526/2\/(2/1)!! e

0 The expansion is effectively one around 7 ~ b



0 Expansion order is defined in terms of oscillator quanta

V5S — a%oé(r) + a]SVLO (aJr oal o(r)+46(r) a® EL) + ..

o [T(n' + HT(n+ 1)1

5(r) =) d%,|n'00)(n00| . = | T i - Dl

n’'n

(n' (¢ =08)JM; TM7p|VPIn(l =0S)JM;TMr) =d>° [aLO —2[(n" = 1)+ (n — 1)]@}0’\”;0 + - ]

0 If we had computed the LECs from a potential, we would have found that the LECs
are a non-local generalization of the familiar Talmi integrals

/ dr'dr rzp/e_TIQ/QYOO QHYV(r',r) TQPG_TQ/QYOQ(Q)

aro +» (p,p) =(0,0)  anro + (p',p) = (0,1) or (1,0)  etc.



O

V. is already regulated by b, A

our LO expansion systematically subtracts out the shortest range Talmi
integrals: there is a |-to-1 correspondence between LECs and Talmi integrals

it makes no sense to include V. in any Talmi integral that has an fitted LEC

V=V yuVv VIV =Vs(arecs — 0T pos)

T

thus the only effect of /% is to correct the long-range Talmi integrals for
which there is no LEC

thus in HOBET the pion is a near-infrared contribution, weak and
perturbative: its peak contribution (b=1.7 f) is at 4.1 f



n’=.IO A = 8hw

n’=9 (n' (¢ =08)J;T| H" |n(¢ =08)J;T)

n=l n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

P



n=10

' summec

1 to ¢

]l or

ders

n=l n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

P

A = 8hw
(n' (¢’ =08)J;T| H™ |n(¢ = 08)J;T)

Pionful HOBET LO

minimal self-
consistent theory




n=10

Q' summed to all orders

n=1

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=I10

P

A = 8hw
(n' (¢’ =08)J;T| H™ |n(¢ = 08)J;T)

Pionful HOBET NLO
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Pionful HOBET N2LO



n=10

[ sul

11111€E(

1 to ¢

2l or

ders

n=1

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=I10

P

LO

A = 8hw
(n' (¢’ =08)J;T| H™ |n(¢ = 08)J;T)

Pionful HOBET N3LO

As the short-range
expansion is continued,
pionic contributions are

pushed further and
further into the infrared

the short-range expansion
accounts for all
short-range physics



0 Leading near-IR pionic contribution is governed by

e " 2m..c2b
ANALO ~ ANapO ™ /dSTTSe_TQ — Vi (r) rio =V2br Q fﬁc ~ 1

Depends on a single dimensionless parameter o

0 Short-range operator structure is based on the HO raising/lowering operator

V¥ = [aroln’0)(n0

+ afola’ ® a’|n’0)(n0| + [n'0)(n0ja@ ® a|
+ a¥nroa’ ©aljn’0)(n0la o a
+ a1 [(at © ah)?|n’0) (n0| + [n0)(n0|(a & a@)?]

+a¥s2 Sl(at @ ah)?[n'0)(n0jla © @ + af © af|n’0)(no0)(a © @)

+ axsyol(al © al)*[n'0)(no] + [n'0)(n0](@ © a)°]



(n'(£' =0 S)JM;TMT\V(;SM(K =0S8)JM;TMr) = dn/n[agO —2[(n = 1)+ (n — 1)](1}%,;0
+4(n' = 1)(n = Dayio + 4l — )0 —2) + (n — 1)(n — 2)]ax 1o
—8[(n' = 1)(n' = 2)(n— 1)+ (n' — 1)(n — 1)(n — 2)]ays1 0
—8[(n’ = 1)(n’ —2)(n’ = 3) + (n — 1)(n — 2)(n — 3)]as70]

so =1+ n=1 onlygetsa contribution from aro
and n’ =1+« n =2 gets contribution from @LO,aNLO
so scheme-independent fitting procedure

more generally, the lowest-energy information determines the LECs
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counting in singlet and triplet channels, pionful theory

implicit dimensionless parameter (

SR

2
T) singlet aAsp ™~ 0.39f

triplet asr ~ 0.75f

so typically an order of magnitude improvement per order

r fm



Chiral symmetry determines only the long-range physics - the white boxes

1S0-1S0  351-351

aLoS

anLoS

anNLOS22

anNLoS40

an3Lo0S542

ansLoS:60

UV interactions only

IR V® coupling



n'=4

1S0-1S0  351-351

aLoS

anLo®

aNNLOS22

anNLoS40

an3Lo542

an3LoS:60

UV interactions only

IR V® coupling

I

(1 B |

n=4

n=5

b governs the

IR/UV optimization



LECs determined directly from phase shifts (the information that used to go in NN potentials)

O [deg]

40+

60+

20+

-o- 1S0 —AV18

1S0 - HOBET N3LO
1P1 —AV18

+ 1P1-HOBETN3LO

~—— ¥ 3P1-Avig
. o 3P1-HOBETN°LO
— 5 3P1 - HOBET NLO

~~~~~~ 3P0 - Avig Described
A 3P0 - HOBETNALO, last
v 3P0 - HOBET NLO meeting

0o 20

40 60 80 100 120
Eias [MeV]

Fig. 4. Phase shifts regenerated from LECs fit to data from
1 to 80 MeV and compared to the original phase shifts from

Avig. In the 'Sy channel the low energy |
50 keV associated with a resonance at ~ 74

behavior down to
keV is reproduced

from data above 1 MeV. In the P, and °P; ¢

hannels even NLO

results based on a single LEC reproduce phase shifts quite well.



rR(r)

u(r)

TABLE I. Deuteron channel: binding energy E} as a function
of the expansion order. Bare denotes a calculation with T'4+V

Virtual perfect to the
scattering data for

Order  EP°™®  C2(LECs) EP°™™  C?(LECS)
bare 3.09525 - -0.76775 -
LO -1.27715 2.2E-2 -2.01110 1.9E-3
NLO -1.95424 1.6E-2 -2.19833 2.2E-6
NNLO -2.17307 6.7E-3 -2.21705 4.0E-8
N3LO  -2.23175 1.3E-3 -2.22464 8.4F-9 <
VAN Projection Ez1MeV
~' \.“ ~ —ET E=1MeV
/ K N—— - Projection E=10MeV
T~ \ -~ — ET E=10MeV
/ / * ---- Projection E=35MeV
, / / N\ \- _ ET E=35MeV
SN \.
S . / - .
——-ﬂ!.-_‘:_:i _____ / \ / ~ R :_\\__—4
\ /
"

Ecm 0-40 MeV:
pionful HOBET
accurate to 0.1 keV

P, P|W)
Continuous function of E, r
reproduced virtually
exactly with 4 LECs
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10._35' A E
10.7* ;
Vir=OPEP
3 4 5 6 7 8 9 10

n+n'

Lepage Plot for Scheme-Independent Fitting: Pionful, Phase Shifts Only

Converges
rapidly:
the improvement
in interactions
no used in the fit

IS systematic



HOBET’s treatment of chiral symmetry:
How efficient is the expansion?

Standard chiral EFT includes the pion because of its dominance of the infrared, but treats
it at all separations, leading to an increasing awkward problem as the under-lying
short-range expansion is carried out, e.g.,

- ’ \ ‘\
b ] | e |

\ J N v \ vy
Y Y Y

LO (v = 0) NLO (v = 2) NNLO (v = 3)

This is intuitively wrong: As the order (fidelity) of the short-range expansion improves,
this should simplify - not complicate - the pionic mid-IR problem.

HOBET resolves this problem elegantly, as shown: the operator basis and its LECs
exactly subtract out all short-range physics. A finite set of LECs for omitted high-order
operators are taken from chiral symmetry.
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NLO

N2LO

NSLO

everything above LO
treated as UV
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isoscalar sigma vs pion exchange

LO Calculation

NLO is the first contributing IR order
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isoscalar sigma vs pion exchange

N3LO Calculation
N4LO is the first contributing IR order

me forib = 1.7 fm
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this is the behavior an efficient EFT Vel >> |Var| ~

should have



Final point: If we have the two-body P-space interaction His = Pio(A) HEF(A) Pia(A)
what is the solution of the three-body problem at the two-body level?
Translational invariance requires use of Pjo3(A) where A= A; +Ax+ A3

The BH equation is

1
P23 H+HE — Q123HQ123H Pi23|¥) = EP23|0)

H = H5+ Ho3 + Hiqs

and when this is evaluated one answers the question

If | have the exact effective interaction at the two-body level for a HO Hilbert space, what
is the corresponding form of the embedding of that effective interaction in a N-body system!?
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This series is simply summed: all matrices are finite, leading to a finite-basis Faddeev equation:
this is what Ken is evaluating now.

This result is required by translational invariance - any simple embedding of a two-body
interaction in a HO must take this form.




