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Neutrinoless double-beta decay and its relevance

Decay in which two neutrons
are transformed into protons
emitting two electrons in the
process

o=@ ARE NEUTRINOS
YA THER OWND
ANTIPARTICLES

THE CASE OF THE MISSING
ANTI-MATTER
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‘\ Q Unstable nuclei for which

single beta decay is not

[ |
/ 0 allowed are candidates

Current experiments have not observed it
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M. Agostini et al., Science 365, 1445

If observed:
* It will establish the Majorana nature of neutrinos
* The absolute neutrino mass can be extracted from the half-life

* It may explain the matter-antimatter asymmetry in the Universe
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How do we plan future
experiments and extract
information from them?

\/ o)
A Cen)
National Nuclear Security Administration



Nuclear matrix element

The number of observed events is related to the exposure and the half-life
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Calculations of the matrix element by diverse nuclear models disagree by
factors from two to three:

* Order of magnitude difference in amount of material or time to observe
the decay

* Unprecise extraction of the neutrino mass

Calculation of the matrix element with ab-initio methods is
computationally expensive

GOAL: Study by means of a simple model how the uncertainty
from chiral EFT propagates to the nuclear matrix element. Are
calculations of the matrix element with ab-initio methods worth
our time?
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Figure from J. Engel et al., Rep. Prog. Phys. 80, 046301
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Nucleon droplet

We employed nucleon droplets to mimic the kinematics of
the valence nucleons

H =T+ U+ Vygrr

* The properties of the nucleon droplet can be calculated
fast and precisely

* We expect the distribution around a mean to behave
similar to that of more involved calculations

* Nuclear observables tend to have a strong systematic
behavior
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Study case: "°Ge

Antisymmetrized HO basis

written in Jacobi coordinates 1gg,2
¢ Nmax= 24
2p1 /2
1f5/2
Number of quanta constrained 2p3/2
from below due Pauli blocking
* For7%Ge: N,,;, =16 Lf7/2
* For ’®Se: N,,, = 14
* il
‘ ‘ Ip3 /2
Q 1291/2
Q
——@

b Lawrence Livermore National Laboratory 5 N A‘S’Z’%

National Nuclear Security Administration



Chiral EFT interactions
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Figure from D. R. Entem et al., Phys. Rev. C 96, 024004
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The nucleons interact via forces from chiral EFT
* Constructed order-by-order
* Quantities of interest are expected to behave as series

O(q) = Oret(q) Y _ cu(q)z”

e At orderv

o.e}

O(q) = O(V) (Q) + Oref(q> Z Ci(Q)ZCi

1=v+1

* The expression for the residual can be employed to derive a
theoretical covariance

J. A. Melendez et al., Phys. Rev. C 96, 024003

We considered chiral forces up to N3LO

We considered diverse regulator cutoffs
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Parameters of the chiral EFT interaction

2N forces fitted to nucleon-nucleon scattering data
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Y= Zexp + Eth
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The objective function considered:

* Experimental uncertainties

* Truncation of the chiral expansion
* Size of the parameters

S. Wesolowski et al., J. Phys. G: Nucl. Part. Phys. 46, 045102

3N forces fitted the energies and radii of 3H and “He

E [MeV] 8.482 28.296

1.759 (36) 1.675 (3)

Feh [fm]
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One-body potential

The one-body potential contains central and spin-orbit parts
U=vc+uvsL-S

For this study we employ a Woods-Saxon potential

S @ (R\'1[d 1
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The parameters of the form factor R and a remain fixed

We chose the parametrization

V, an isospin-dependent parameter

0\ =V

These parameters are fit to the binding energies of the

nuclei of interest
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Sampling the parameters in the chiral EFT interaction

We sampled many LEC sets from the posterior distribution

1 1
exp (—§rTE_1r — WCTC> Y= Yexp Tt 2th
C

Experimental covariance

(Bexp)ij = 07 0i;

o 1.0
O

Theoretical covariance

mQH \ ) Qf+1Qk+1
U|? 0.5 -+ \ / (Zth)ij - (yref)i(yref)jczl_%cgizng(Qia QJ)
& ‘
0.4 1 S. Wesolowski et al., J. Phys. G: Nucl. Part. Phys. 46, 045102
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J. A. Melendez et al., Phys. Rev. C 96, 024003
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Discriminating parameter sets
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Few-body results

For models including chiral forces up to N2LO /

Observable m A,=450 A,=500 A,=550

E [MeV] 8.482 8.486 8.486(+128, -152) 8.486

*H r, [fm] 1.759(36) 1.747 1.747(+19, -18) 1.749
r.. [fm] 1.669 1.669(+21, -20) 1.672

E [MeV] 28.296 28.290 28.290 28.290

“He  rg, [fm] 1.675(3) 1.648 1.650 1.657
Mm [fM] 1.424 1.427 1.434

Intervals with 95% DOB in the distributions for the energies:

* For 7°Ge ~ 1 MeV
* For 75Se ~ 2 MeV
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Neutrinoless double-beta decay in chiral EFT

The OvB B decay operator has been written in chiral EFT
G. Prezeau et al., Phys. Rev. D 68, 034016

V. Cirigliano et al., J. High Energy Phys. 2018, 19
V. Cirigliano et al., Phys. Rev. Lett. 120, 202001

At LO a contact term vyields a short-distance contribution
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Uncertainty from the chiral NN interaction

Matrix elements in our model from chiral forces at
5.8 e NLO different orders with different regulator cutoffs
® o NNLO  Means (circles) do not include the short-distance
26 ® N3LO contribution
' o  Distributions at NNLO arise from propagating the
Q. uncertainty from the chiral NN forces
S 2.4 - o
C>E * Distributions show dependence on the regulator cutoff
29 - ¢ ° * At NNLO intervals with 95% DOB are at most 0.2 wide
2.0 -
| | I | |
400 450 500 550 600 How bad does the inclusion of the short-distance
N\ [MeV] contribution mess up these distributions?
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Sampling the short-distance parameter
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The Fermi and Gamow-Teller components are of order one
The tensor component is small

To take this contribution into account the short-distance
contribution we must sample g2’V :

* Factor out the estimated scale

5" = fag0 "

V. Cirigliano et al., Phys. Rev. Lett. 120, 202001

« Assume GV is normally distributed

pr(VN |, o) o exp (—

oc =3 ,u:()
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Uncertainty from the short-distance contribution
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* The distribution labeled “This work” results from the
uncertainty from the chiral NN forces and the sampling
the short-distance parameter

* The truncation error can be included once N3LO

calculations are completed

* The width of the interval with 95% DOB is smaller than
the spread from the diverse nuclear models
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Summary and Outlook

« We employ four-nucleon droplets to simulate the * Push our calculations up to N4LO for the interaction
valence nucleons in 7°Ge and 76Se. These nucleons * Study the approximate independence of the
interact via chiral EFT forces distribution with the one-body potential

* Study other OvfSf decay candidates (13®Xe)
* The parameters of the chiral interaction are fitted to
scattering data by means of an objective function that
considers experimental uncertainties, the truncation
of the chiral expansion and the size of the parameters

THANKS FOR YOUR ATTENTION!

* We sampled the parameters of the chiral force and
generate a large number of wave functions from were >-67 I 3
distributions for diverse quantities are obtained Ls
07 -
K
* We obtained distributions for the components of the 3 S0
matrix element required to quantify the uncertainty eor - 3
3.2 - o] O -
for the OvS S decay EDF o <M M -
® QRPATU ® SM St-M-Tk
2.4 7 QRPA Jy SM M-SRC
® QRPACh — This work

@ Lawrence Livermore National Laboratory 16 N A'S‘i‘?’g‘;



B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
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