Ab initio Calculation of Nuclear Matrix Elements of Neutrinoless Double Beta Decay with the IMSRG+GCM approach

Jiangming Yao

FRIB/NSCL, Michigan State University, East Lansing, Michigan 48824, USA

DBD collaboration meeting, UNC at Chapel Hill, Sep. 6, 2019

Nuclear matrix element for neutrinoless double beta decay

The NME for the $0\nu\beta\beta$ transition from $|0_i^+\rangle$ to $|0_f^+\rangle$

$$M^{0\nu}(0^+_i \rightarrow 0^+_f) = \langle 0^+_f | O^{0\nu} | 0^+_i \rangle$$

- the transition operator: exchange of light neutrinos and with closure approximation

$$O^{0\nu} = \frac{4\pi R}{g_A^2} \int d^3 \vec{x}_1 \int d^3 \vec{x}_2 \int \frac{\int d^3 \vec{q}}{(2\pi)^3} \frac{e^{i\vec{q}\cdot(\vec{x}_1-\vec{x}_2)}}{q[q+\bar{E}-(E_i+E_f)/2]} \mathcal{J}^{\dagger}_{\mu}(\vec{x}_1) \mathcal{J}^{\mu\dagger}(\vec{x}_2)$$

- the effective nuclear current

$$\mathcal{J}^{\dagger}_{\mu}(x) = \bar{\psi}(x) \left[g_{V}(q^{2})\gamma_{\mu} - g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + ig_{M}(q^{2})\frac{\sigma_{\mu\nu}}{2m_{p}}q^{\nu} - g_{P}(q^{2})q_{\mu}\gamma_{5} \right] \tau^{+}\psi(x).$$

- the transition operator in non-relativistic reduction form

$$\begin{array}{c} \mathcal{O}^{0\nu} = \left| \begin{array}{c} \frac{2R}{\pi g_A^2} \int_0^{\infty} q dq \sum_{a,b} \frac{j_0(qr_{ab})[h_F(q) + h_{\mathrm{GT}}(q)\vec{\sigma}_a \cdot \vec{\sigma}_b] + j_2(qr_{ab})h_T(q)[3\vec{\sigma}_j \cdot \hat{r}_{ab}\vec{\sigma}_k \cdot \hat{r}_{ab} - \vec{\sigma}_a \cdot \vec{\sigma}_b]}{q + \vec{E} - (E_i + E_f)/2} q + \vec{E} - (E_i + E_f)/2 \end{array} \right| \\ \hline \\ h_{F\cdot\mathrm{VV}}(q^2) = -g_A^2(q^2), \\ h_{\mathrm{GT}-\mathrm{AP}}(q^2) = -g_A^2(q^2), \\ h_{\mathrm{GT}-\mathrm{AP}}(q^2) = \frac{2}{3}g_A(q^2)g_P(q^2)\frac{q^2}{2m_P}, \\ h_{\mathrm{GT}-\mathrm{PP}}(q^2) = -\frac{1}{3}g_P^2(q^2)\frac{q^4}{4m_P^2}, \\ h_{\mathrm{T}-\mathrm{AP}}(q^2) = h_{\mathrm{GT}-\mathrm{AP}}(q^2), \\ h_{T\cdot\mathrm{PP}}(q^2) = h_{\mathrm{GT}-\mathrm{AP}}(q^2), \\ h_{T\cdot\mathrm{PP}}(q^2) = h_{\mathrm{GT}-\mathrm{AP}}(q^2), \\ h_{T\cdot\mathrm{PM}}(q^2) = -\frac{1}{2}h_{\mathrm{GT}-\mathrm{MM}}(q^2). \end{array} \right|$$

48

76 82

96100

A

116 124 130 136 150

Source of discrepancy among different models

- Different effective interactions
- Many-body methods with different level of approximations

Jiao, Engel, Holt (2017)

 For a given (effective) Hamiltonian, shell model and GCM predict similar values for the NME.

Ab initio methods in the sense that

- starts from a bare nucleon-nucleon interaction (fitted to NN scattering data)
- solves Schroedinger equation (for the many-body system) with a controllable accuracy of approximations
- Benchmark calculations for light nuclei:
- Variational Monte Carlo calculation starting from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction for light nuclei S. Pastore et al. (2017)
- V No-core shell model calculations starting from chiral NN+3N interactions for light nuclei P. Gysbers et al., R. A. Basili et al.
- Extension to medium-mass candidate nuclei:
- √ Application of coupled-cluster (S. Novario, G. Hagen, T. Papenbrock et al.) and valence-space in-medium similarity renormalization group (IMSRG) (C. Payne, R. Stroberg, J. Holt et al.) method starting from chiral NN+3N interactions for $0\nu\beta\beta$ -candidate nuclei
- Merging the multi-reference IMSRG with generator coordinate method (GCM) starting from chiral NN+3N interactions for 0*ν*ββ-candidate nuclei JMY, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, H. Hergert, arXiv:1908.05424

The IMSRG+GCM method: procedure

• Wave function of the reference state (0+)

$$|\Phi_{\rm ref}^{JNZ}\rangle = \sum_{Q} F_{Q}^{JNZ} \hat{P}^{J} \hat{P}^{N} \hat{P}^{Z} |\Phi_{Q}\rangle$$

· Many-body density matrices

· Normal-ordered operators

$$H = E^{(0b)}(\lambda) + f_0^{(1b)}(\lambda) + \Gamma^{(2b)}(\lambda) + W^{(3b)}(\lambda) + \cdots$$

in terms of irreducible densities

$$\begin{array}{lll} \lambda_q^{\rho} &=& \rho_q^{\rho}, \\ \lambda_r^{\rho q} &=& \rho_r^{\rho q} - \mathcal{A}(\lambda_r^{\rho} \lambda_q^{q}), \\ \lambda_{stu}^{\rho q \cdots} &=& \rho_{stu}^{\rho q \cdots} - \mathcal{A}(\lambda_s^{\rho} \lambda_{tu}^{q \cdots}) - \cdots - \mathcal{A}(\lambda_s^{\rho} \lambda_q^{q} \lambda_u^{r} \cdots) \end{array}$$

The IMSRG+GCM method: procedure

J. M. Yao

J. M. Yao

J. M. Yao

· Wave function of low-lying states

$$\Psi^{JMZN}\rangle = \sum_{\boldsymbol{Q}_i} F^{JZN}(\boldsymbol{Q}_i) | JMZN(\boldsymbol{Q}_i) \rangle$$

· Hill-Wheeler-Griffin equation

$$\sum_{\mathbf{Q}_j} \left[\mathcal{H}^{JNZ}(\mathbf{Q}_i, \mathbf{Q}_j) - E^J \mathcal{N}^{JNZ}(\mathbf{Q}_i, \mathbf{Q}_j) \right] F^{JNZ}(\mathbf{Q}_j) = 0$$

where the kernels of operators \hat{O} are defined as

$$O^{JNZ}(\mathbf{Q}_i, \mathbf{Q}_j) = \langle JNZ(\mathbf{Q}_i) | \hat{O} | JNZ(\mathbf{Q}_j) \rangle.$$

JMY, J. Engel, L. J. Wang, C. F. Jiao, and H. Hergert (2018)

- Starting from a chiral NN(N³LO) +3N (N²LO) interaction (evolved with the free-space SRG) K. Hebeler et al. (2011)
- \blacksquare Benchmark calculations for light nuclei: $^{8}\text{He} \rightarrow {}^{8}\text{Be}$ and ${}^{22}\text{O} \rightarrow {}^{22}\text{Ne}$
- Application to candidate $0\nu\beta\beta$ process: ⁴⁸Ca \rightarrow ⁴⁸Ti

Benchmark calculation: $0\nu\beta\beta$ from ⁸He to ⁸Be

Figure: The potential energy surfaces from different calculations with $e_{\mathrm{Max}}=$ 6, $\hbar\Omega=$ 16 MeV.

Benchmark calculation: $0\nu\beta\beta$ from ⁸He to ⁸Be

- IMSRG+PNAMP(Minimum): $M_{Tot}^{0\nu}$ (GT/F/TE) = 1.40(1.19/0.28/-0.07)
- IMSRG+GCM: $M_{Tot}^{0\nu}(GT/F/TE) = 0.17(0.19/0.04/-0.06)$

Figure: The potential energy surface from PNP (VAP)+HFB calculation with $e_{Max} = 6$, $\hbar\Omega = 16$ MeV.

²²O is dominated by spherical state

²²Ne is dominated by prolate deformed state

Application: $0\nu\beta\beta$ from ²²O to ²²Ne

Benchmark calculation: $0\nu\beta\beta$ from ²²O to ²²Ne

IMSRG+PNAMP (minimum)

- $M^{0\nu} = 0.49$ by the 2N+3N interaction
- $M^{0\nu} = 0.34$ by the 2N interaction

IMSRG+GCM

• $M^{0\nu} = 0.43$ by the 2N+3N interaction

• $M^{0\nu} = 0.15$ by the 2N interaction

Results from NCSM and CC calcualtions

Application: $0\nu\beta\beta$ from ⁴⁸Ca to ⁴⁸Ti

- IMSRG+GCM: Low-energy structure of ⁴⁸Ti is reasonably reproduced (spectrum stretched). Inclusion of non-collective configurations from neutron-proton isoscalar pairing fluctuation can compress the spectra further by about 6%.
- IMSRG+CI(T0 → T1): the spectrum becomes more stretched in a larger model space (more collective correlations).

Application: $0\nu\beta\beta$ from ⁴⁸Ca to ⁴⁸Ti

Configuration-dependent NME

The $M^{0\nu}$ is decreasing dramatically with the quadrupole deformation, but moderately with ϕ_{np} at $\beta_2 = 0.2$ in ⁴⁸Ti.

$$M^{0\nu} = \int dr_{12} \ C^{0\nu}(r_{12})$$

- The quadrupole deformation in ⁴⁸Ti changes both the short and long-range behaviors
- Neutron-proton isoscalar pairing is mainly a short-range effect

$$C^{0\nu}(r_{12}) = \sum_{p \le p', n \le n'} . \sum_{J} C^{J}_{pp'nn'}(r_{12}),$$

with

$$C^{J}_{pp'nn'}(r_{12}) = \frac{(2J+1)}{\sqrt{(1+\delta_{pp'})(1+\delta_{nn'})}} \langle (pp')J|\bar{O}^{0\nu}(r_{12})|(nn')J\rangle \rho^{J}_{pp'nn'},$$

Application: $0\nu\beta\beta$ from ⁴⁸Ca to ⁴⁸Ti (preliminary results)

- The value from Markov-chain Monte-Carlo extrapolation is $M^{0\nu} = 0.61^{+0.05}_{-0.04}$
- The neutron-proton isoscalar pairing fluctuation quenches ~17% further, which might be canceled out partially by the isovector pairing fluctuation.

Summary

Take-away messages:

- Worldwide ton-scale experiments are proposed to measure the $0\nu\beta\beta$ from which the determination of neutrino mass relies on the NMEs.
- Several groups have begun programs to calculate the NMEs from first principles, taking advantage of a flowering of ab initio nuclear-structure theory in the last couple of decades.
- The multi-reference IMSRG+GCM opens a door to modeling deformed nuclei with realistic nuclear forces (from chiral EFT). Many interesting phenomena of low-energy physics (shape transition, coexistence, cluster structure) can be explored within this framework.
- The NME from ${}^{48}Ca \rightarrow {}^{48}Ti$ is calculated from *first principles*.

What's next:

- \blacksquare Extension to heavier candidate nuclei, like $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$ and $^{136}\text{Xe} \rightarrow ^{136}\text{Ba}.$
- More benchmarks among several different *ab initio* methods for the NMEs.
- Quantification of uncertainties from different sources, impacts of induced three-body operators, two-body currents, contact transition-operator term, etc

Michigan State University	University of North Carolina at Chapel Hill
Scott BognerHeiko HergertRoland Wirth	Benjamin BallyJonanthan Engel
	Iowa State University
San Diego State University	Robert A. Basili
Changfeng Jiao	James P. Vary
Universidad Autónoma de Madrid	Southwest University
Tomás R. Rodríguez	Longjun Wang

Thank your for your attention!

J. M. Yao

Application: $0\nu\beta\beta$ from ⁴⁸Ca to ⁴⁸Ti

The np isoscalar pairing amplitude:

$$\phi_{np} = \langle \Phi | P_0^{\dagger} | \Phi
angle + \langle \Phi | P_0 | \Phi
angle$$

with

$${\cal P}^{\dagger}_{\mu} = rac{1}{\sqrt{2}} \sum_{\ell} \hat{\ell} [a^{\dagger}_{\ell} a^{\dagger}_{\ell}]^{L=0,J=1,T=0}_{0\mu0}$$

 Collective wave functions of g.s. extended along the φ_{np}.

Neutrinoless double beta-decay: contribution from nuclear physi 🍕 🚱

 $\beta\beta$ decay (candidate) nuclei

$$[T_{1/2}^{0\nu}]^{-1} = G_{0\nu} \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \right|^2 \left| M^{0\nu} \right|^2$$

where the phase-space factor $G_{0\nu}(\sim 10^{-14} {\rm yr}^{-1})$ can be evaluated precisely Kotila ('12), Stoica ('13). The effective neutrino mass is related to the masses m_k and mixing matrix elements U_{ek} of neutrino species

J. M. Yao