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Nuclear matrix element for neutrinoless double beta decay

The NME for the 0νββ transition from
|0+

i 〉 to |0+
f 〉

M0ν(0+
i → 0+

f ) = 〈0+
f |O

0ν |0+
i 〉

– the transition operator: exchange of light neutrinos and with closure approximation

O0ν =
4πR
g2

A

∫
d3~x1

∫
d3~x2

∫ ∫
d3~q

(2π)3

ei~q·(~x1−~x2)

q[q + Ē − (Ei + Ef )/2]
J †µ(~x1)J µ†(~x2)

– the effective nuclear current

J †µ(x) = ψ̄(x)

[
gV (q2)γµ − gA(q2)γµγ5 + igM (q2)

σµν

2mp
qν − gP(q2)qµγ5

]
τ+ψ(x).
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Nuclear matrix element for neutrinoless double beta decay

– the transition operator in non-relativistic reduction form
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Nuclear matrix element for neutrinoless double beta decay

Source of discrepancy among different models

Different effective interactions

Many-body methods with different level of approximations

Jiao, Engel, Holt (2017)

For a given (effective)
Hamiltonian, shell model and
GCM predict similar values for the
NME.
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ab initio methods for neutrinoless double beta decay

Ab initio methods in the sense that

starts from a bare nucleon-nucleon interaction (fitted to NN scattering data)

solves Schroedinger equation (for the many-body system) with a controllable
accuracy of approximations

− Benchmark calculations for light nuclei:
√

Variational Monte Carlo calculation starting from the Argonne v18 two-nucleon
potential and Illinois-7 three-nucleon interaction for light nuclei S. Pastore et al.
(2017)

√
No-core shell model calculations starting from chiral NN+3N interactions for light
nuclei P. Gysbers et al., R. A. Basili et al.

− Extension to medium-mass candidate nuclei:√
Application of coupled-cluster (S. Novario, G. Hagen, T. Papenbrock et al.) and
valence-space in-medium similarity renormalization group (IMSRG) (C. Payne, R. Stroberg, J.
Holt et al.) method starting from chiral NN+3N interactions for 0νββ-candidate nuclei

√
Merging the multi-reference IMSRG with generator coordinate method (GCM) starting from
chiral NN+3N interactions for 0νββ-candidate nuclei
JMY, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, H. Hergert, arXiv:1908.05424
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The IMSRG+GCM method: procedure
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The IMSRG+GCM method: procedure
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Applications

Starting from a chiral NN(N3LO) +3N (N2LO) interaction (evolved with the
free-space SRG) K. Hebeler et al. (2011)

Benchmark calculations for light nuclei: 8He→ 8Be and 22O→ 22Ne

Application to candidate 0νββ process: 48Ca→ 48Ti
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Benchmark calculation: 0νββ from 8He to 8Be

Figure: The potential energy surfaces from different calculations with eMax = 6, ~Ω = 16 MeV.
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Benchmark calculation: 0νββ from 8He to 8Be

IMSRG+PNAMP(Minimum): M0ν
Tot(GT/F/TE) = 1.40(1.19/0.28/−0.07)

IMSRG+GCM: M0ν
Tot(GT/F/TE) = 0.17(0.19/0.04/−0.06)
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Benchmark calculation: 0νββ from 22O to 22Ne

Figure: The potential energy surface from PNP (VAP)+HFB calculation with eMax = 6, ~Ω = 16 MeV.

22O is dominated by spherical state
22Ne is dominated by prolate deformed state
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Application: 0νββ from 22O to 22Ne
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Benchmark calculation: 0νββ from 22O to 22Ne

Impact of the 3N interaction
IMSRG+PNAMP (minimum)

M0ν = 0.49 by the 2N+3N interaction

M0ν = 0.34 by the 2N interaction

IMSRG+GCM

M0ν = 0.43 by the 2N+3N interaction

M0ν = 0.15 by the 2N interaction

Results from NCSM and CC calcualtions
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Application: 0νββ from 48Ca to 48Ti

2

radius [13]. The normal-ordered two-body (NO2B) approxi-
mation is adopted for the 3N forces with an additional energy
cut on three-body matrix elements e1 + e2 + e3  E3max = 14.
Here, the eis are single-particle energies (in units of ~⌦) of the
harmonic-oscillator basis.

Starting from the Hamiltonian (2), we carry out a variation
after particle-number projection (PNVAP) calculation within
the framework of the symmetry-unrestricted Hartree-Fock-
Bogliubov (HFB) approach. This calculation provides us with
a convenient way to choose a reference state for the IM-SRG
calculation [14]. Here, we choose it as an ensemble of the
energy-minimum states of Ca48 and Ti48 with proper quantum
numbers. We normal-order the Hamiltonian (2) with respect
to this reference state and decouple the reference state from all
its excitation states through a continuous unitary transforma-
tion U(s) = e⌦(s), where ⌦(s) is an anti-hermitian many-body
operator determined by the flow equation [15]

d⌦(s)
ds

=

1X

n=0

Bn

n!
adk
⌦(s)(⌘(s)) (3)

where Bn=0,1,2,··· are the Bernoulli numbers, adk
⌦(⌘) =

[⌦, adk�1
⌦ (⌘)] is a chain of nested commutators with ad0

⌦(⌘) =
⌘, and ⌘(s) is the generator of the IM-SRG transformation.
All the operators of interest are evolved with the same unitary
transformation and computed by using the Baker-Campbell-
Hausdor↵ formula

O(s) = e⌦(s)Oe�⌦(s) =

1X

n=0

1
n!

adk
⌦(O). (4)

The IM-SRG flow brings many-body correlations into the
Hamiltonian and transforms the Hamiltonian to be more suit-
able for mean-field and beyond calculations. By using the
ensemble reference state, we are able to derive an e↵ective
Hamiltonian with a single unitary transformation for both
initial and final nuclei and the evolved 0⌫�� decay opera-
tor, avoiding the di�culty of having two di↵erent ones [16].
With the evolved Hamiltonian H(s), we carry out a sec-
ond PNVAP calculation which generates a set of number-
projected HFB wave functions |�(Q)i with Q = {q2µ, �np}
representing di↵erent average values of quadrupole moments
q2µ = h�(Q)|r2Y2µ|�(Q)i and neutron-proton isoscalar pair-
ing amplitude �np = h�(Q)|P†0|�(Q)i + h�(Q)|P0|�(Q)i. The
neutron-proton isoscalar pairing operator is defined as

P†µ =
1p
2

X

`

ˆ̀[a†
`
a†
`
]L=0,J=1,T=0
0µ0 , (5)

where ˆ̀ =
p

2` + 1, and L, J,T are the coupled orbital angu-
lar momentum, total angular momentum, and isospin of the
neutron-proton pair. If not mentioned explicitly, we impose
axial symmetry for the HFB wave functions which, as we will
see, is a good approximation for Ca48 and Ti48 . The wave
functions of low-lying states are constructed as a linear su-
perposition of these HFB wave functions projected onto good

FIG. 1. The particle-number projected potential energy surfaces of
Ca48 and Ti48 in the deformation (�2, �) plane. The two neighbouring

contour lines are separated by 1 MeV.

particle numbers (N,Z) and angular momentum J within the
GCM framework,

| JNZi =
X

Qi

FJNZ(Qi) |JNZ(Qi)i , (6)

where |JNZ(Qi)i ⌘ PJ PN PZ |�(Qi)i with PN(Z) and PJ be-
ing the projection operators onto particle numbers and angu-
lar momentum, respectively. The mixing weight FJNZ(qi) is
determined via the variational principle, leading to the Hill-
Wheeler-Gri�n (HWG) equation [17]
X

Q j

h
H JNZ(Qi,Q j) � EJ

↵N JNZ(Qi,Q j)
i

FJNZ
↵ (Q j) = 0, (7)

where the kernels of operators O are defined as

OJNZ(Qi,Q j) = hJNZ(Qi)|O|JNZ(Q j)i . (8)

The HWG equation (7) is solved as follows [17]: First, we
diagonalize the norm kernel matrix N JNZ(Qi,Q j) and obtain
its eigenvalues nJ

k and eigenvectors uJ
k (Qi), from which we

construct an orthonormal basis of the “natural" states by re-
moving the eigenvalues with nJ

k less than a given cuto↵ value.
The Hamiltonian matrix in this new basis is constructed as

H J
kl =

1q
nJ

k nJ
l

X

Qi,Q j

uJ
k (Qi)H JNZ(Qi,Q j)u

J
l (Q j) (9)

which is subsequently diagonalized
X

l

H J
klG

J
l = EJ

↵G
J
l , (10)

where ↵ labels di↵erent states for a given spin J. The col-
lective wave functions gJ

↵(Q) =
P

k GJ
k uJ

k (Q) are usually in-
troduced and interpreted as probability amplitude as they are
orthogonal to each other. The GCM method combined with
modern energy density functionals (EDF) is referred to mul-
tireference (MR-) EDF [18–20] which has achieved a great
success for low-lying states of nuclei with complex shapes.
It has been found however that most of the MR-EDF frame-
works may su↵er from the issue of spurious divergences and
finite steps [21, 22], and therefore a lot of e↵ort is devoted to
addressing this issue. We note that this issue does not exist in
our Hamiltonian-based calculation.

Extrapolation

E(eMax) = E(∞) + a exp(−b · eMax)
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Application: 0νββ from 48Ca to 48Ti

IMSRG+GCM: Low-energy structure of 48Ti is reasonably reproduced (spectrum
stretched). Inclusion of non-collective configurations from neutron-proton isoscalar
pairing fluctuation can compress the spectra further by about 6%.

IMSRG+CI(T0→ T1): the spectrum becomes more stretched in a larger model
space (more collective correlations).
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Application: 0νββ from 48Ca to 48Ti

Configuration-dependent NME

The M0ν is decreasing dramatically with the quadrupole deformation, but moderately
with φnp at β2 = 0.2 in 48Ti.
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Application: 0νββ from 48Ca to 48Ti

M0ν =

∫
dr12 C0ν(r12)

The quadrupole deformation in 48Ti changes
both the short and long-range behaviors

Neutron-proton isoscalar pairing is mainly a
short-range effect
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Application: 0νββ from 48Ca to 48Ti

C0ν(r12) =
∑

p≤p′,n≤n′
.
∑

J

CJ
pp′nn′ (r12),

with

CJ
pp′nn′ (r12) =

(2J + 1)√
(1 + δpp′ )(1 + δnn′ )

〈(pp′)J|Ō0ν(r12)|(nn′)J〉ρJ
pp′nn′ ,
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Application: 0νββ from 48Ca to 48Ti (preliminary results)

The value from Markov-chain
Monte-Carlo extrapolation is
M0ν = 0.61+0.05

−0.04

The neutron-proton isoscalar pairing
fluctuation quenches ∼17% further,
which might be canceled out partially
by the isovector pairing fluctuation.
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Summary

Take-away messages:

Worldwide ton-scale experiments are proposed to measure the 0νββ from which
the determination of neutrino mass relies on the NMEs.

Several groups have begun programs to calculate the NMEs from first principles,
taking advantage of a flowering of ab initio nuclear-structure theory in the last
couple of decades.

The multi-reference IMSRG+GCM opens a door to modeling deformed nuclei with
realistic nuclear forces (from chiral EFT). Many interesting phenomena of
low-energy physics (shape transition, coexistence, cluster structure) can be
explored within this framework.

The NME from 48Ca→ 48Ti is calculated from first principles.

What’s next:

Extension to heavier candidate nuclei, like 76Ge→ 76Se and 136Xe→ 136Ba.

More benchmarks among several different ab initio methods for the NMEs.

Quantification of uncertainties from different sources, impacts of induced
three-body operators, two-body currents, contact transition-operator term, etc
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Application: 0νββ from 48Ca to 48Ti

The np isoscalar pairing
amplitude:

φnp = 〈Φ|P†0 |Φ〉+ 〈Φ|P0|Φ〉

with

P†µ =
1
√

2

∑
`

ˆ̀[a†`a
†
` ]L=0,J=1,T =0

0µ0

Collective wave functions of
g.s. extended along the φnp .
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Neutrinoless double beta-decay: contribution from nuclear physics

[T 0ν
1/2]−1 = G0ν

∣∣∣∣ 〈mββ〉me

∣∣∣∣2 ∣∣∣M0ν
∣∣∣2

where the phase-space factor G0ν(∼ 10−14yr−1)
can be evaluated precisely Kotila (’12), Stoica (’13).
The effective neutrino mass is related to the masses
mk and mixing matrix elements Uek of neutrino
species

〈mββ〉 =
∣∣∑

k

U2
ek mk
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