Ab initio Calculation of Nuclear Matrix Elements of Neutrinoless Double Beta Decay with the IMSRG+GCM approach

> Jiangming Yao

FRIB/NSCL, Michigan State University, East Lansing, Michigan 48824, USA

DBD collaboration meeting,
UNC at Chapel Hill, Sep. 6, 2019

- The NME for the $0 \nu \beta \beta$ transition from $\left|0_{i}^{+}\right\rangle$to $\left|0_{f}^{+}\right\rangle$

$$
M^{0 \nu}\left(0_{i}^{+} \rightarrow 0_{f}^{+}\right)=\left\langle 0_{f}^{+}\right| O^{0 \nu}\left|0_{i}^{+}\right\rangle
$$

- the transition operator: exchange of light neutrinos and with closure approximation

$$
O^{0 \nu}=\frac{4 \pi R}{g_{A}^{2}} \int d^{3} \vec{x}_{1} \int d^{3} \vec{x}_{2} \int \frac{\int d^{3} \vec{q}}{(2 \pi)^{3}} \frac{e^{i \vec{q} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)}}{q\left[q+\bar{E}-\left(E_{i}+E_{f}\right) / 2\right]} \mathcal{J}_{\mu}^{\dagger}\left(\vec{x}_{1}\right) \mathcal{J}^{\mu \dagger}\left(\vec{x}_{2}\right)
$$

- the effective nuclear current

$$
\mathcal{J}_{\mu}^{\dagger}(x)=\bar{\psi}(x)\left[g_{V}\left(q^{2}\right) \gamma_{\mu}-g_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+i g_{M}\left(q^{2}\right) \frac{\sigma_{\mu \nu}}{2 m_{p}} q^{\nu}-g_{P}\left(q^{2}\right) q_{\mu} \gamma_{5}\right] \tau^{+} \psi(x)
$$

Nuclear matrix element for neutrinoless double beta decay

- the transition operator in non-relativistic reduction form

$$
O^{0 \nu}=\frac{2 R}{\pi g_{A}^{2}} \int_{0}^{\infty} q d q \sum_{a, b} \frac{j_{0}\left(q r_{a b}\right)\left[h_{F}(q)+h_{\mathrm{GT}}(q) \vec{\sigma}_{a} \cdot \vec{\sigma}_{b}\right]+\dot{j}_{2}\left(q r_{a b}\right) h_{T}(q)\left[3 \vec{\sigma}_{j} \cdot \hat{r}_{a b} \vec{\sigma}_{k} \cdot \hat{r}_{a b}-\vec{\sigma}_{a} \cdot \vec{\sigma}_{b}\right]}{q+\vec{E}-\left(E_{i}+E_{f}\right) / 2} \tau_{a}^{+} \tau_{b}^{+}
$$

$$
\begin{aligned}
h_{F-\mathrm{VV}}\left(q^{2}\right) & =-g_{V}^{2}\left(q^{2}\right), \\
h_{\mathrm{GT}-\mathrm{AA}}\left(q^{2}\right) & =-g_{A}^{2}\left(q^{2}\right), \\
h_{\mathrm{GT}-\mathrm{AP}}\left(q^{2}\right) & =\frac{2}{3} g_{A}\left(q^{2}\right) g_{P}\left(q^{2}\right) \frac{q^{2}}{2 m_{p}}, \\
h_{\mathrm{GT}-\mathrm{PP}}\left(q^{2}\right) & =-\frac{1}{3} g_{P}^{2}\left(q^{2}\right) \frac{q^{4}}{4 m_{p}^{2}}, \\
h_{\mathrm{GT}-\mathrm{MM}}\left(q^{2}\right) & =-\frac{2}{3} g_{M}^{2}\left(q^{2}\right) \frac{q^{2}}{4 m_{p}^{2}}, \\
h_{T-\mathrm{AP}}\left(q^{2}\right) & =h_{\mathrm{GT}-\mathrm{AP}}\left(q^{2}\right), \\
h_{T-\mathrm{PP}}\left(q^{2}\right) & =h_{\mathrm{GT}-\mathrm{PP}}\left(q^{2}\right), \\
h_{T-\mathrm{MM}}\left(q^{2}\right) & =-\frac{1}{2} h_{\mathrm{GT}-\mathrm{MM}}\left(q^{2}\right)
\end{aligned}
$$

Nuclear matrix element for neutrinoless double beta decay

Source of discrepancy among different models

- Different effective interactions
- Many-body methods with different level of approximations

- For a given (effective) Hamiltonian, shell model and GCM predict similar values for the NME.

Jiao, Engel, Holt (2017)

ab initio methods for neutrinoless double beta decay

Ab initio methods in the sense that

- starts from a bare nucleon-nucleon interaction (fitted to NN scattering data)

■ solves Schroedinger equation (for the many-body system) with a controllable accuracy of approximations

- Benchmark calculations for light nuclei:
\checkmark Variational Monte Carlo calculation starting from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction for light nuclei S. Pastore et al. (2017)
\checkmark No-core shell model calculations starting from chiral NN+3N interactions for light nuclei P. Gysbers et al., R. A. Basili et al.
- Extension to medium-mass candidate nuclei:
$\sqrt{ }$ Application of coupled-cluster (S. Novario, G. Hagen, T. Papenbrock et al.) and valence-space in-medium similarity renormalization group (IMSRG) (C. Payne, R. Stroberg, J. Holt et al.) method starting from chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions for $0 \nu \beta \beta$-candidate nuclei
\checkmark Merging the multi-reference IMSRG with generator coordinate method (GCM) starting from chiral $\mathrm{NN}+3 \mathrm{~N}$ interactions for $0 \nu \beta \beta$-candidate nuclei
JMY, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, H. Hergert, arXiv:1908.05424

The IMSRG+GCM method: procedure

GCM
define reference state

- Wave function of the reference state ($0+$)

$$
\left|\Phi_{\mathrm{ref}}^{J N Z}\right\rangle=\sum_{Q} F_{Q}^{J N Z} \hat{P}^{J} \hat{P}^{N} \hat{P}^{Z}\left|\Phi_{Q}\right\rangle
$$

- Many-body density matrices

$$
\rho_{s t u \cdots}^{p q r \cdots}=\left\langle\Phi_{\text {ref }}\right| A_{s t u \cdots}^{\text {par } \ldots}\left|\Phi_{\text {ref }}\right\rangle .
$$

- Normal-ordered operators

$$
H=E^{(0 b)}(\lambda)+f_{0}^{(1 b)}(\lambda)+\Gamma^{(2 b)}(\lambda)+W^{(3 b)}(\lambda)+\cdots
$$

in terms of irreducible densities

$$
\begin{aligned}
\lambda_{q}^{p} & =\rho_{q}^{p}, \\
\lambda_{r s}^{p q} & =\rho_{s s}^{p q}-\mathcal{A}\left(\lambda_{r}^{p} \lambda_{s}^{q}\right), \\
\lambda_{s t u \cdots}^{p q r \ldots} & =\rho_{s t u \cdots}^{p q r_{1} \cdots}-\mathcal{A}\left(\lambda_{s}^{p} \lambda_{t u \cdots}^{q r \cdots}\right)-\cdots-\mathcal{A}\left(\lambda_{s}^{p} \lambda_{t}^{q} \lambda_{u}^{r} \cdots\right)
\end{aligned}
$$

The IMSRG+GCM method: procedure

GCM
define reference state

IMSRG

evolve operators

GCM
 extract observables

- Flow equation: $\frac{d H(s)}{d s}=[\eta(s), H(s)]$
where the $\eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s)$ is the so-called generator chosen to decouple a given reference state from its excitations.

Tsukiyama, Bogner, and Schwenk (2011) Hergert, Bogner, Morris, Schwenk, Tsukiyama (2016)

The IMSRG+GCM method: procedure

GCM
define reference state

IMSRG

evolve operators

GCM

extract observables

- Flow equation: $\frac{d H(s)}{d s}=[\eta(s), H(s)]$ where the $\eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s)$ is the so-called generator chosen to decouple a given reference state from its excitations.
- Magnus: $U(s)=e^{\Omega(s)} \quad \frac{\mathrm{d} \Omega(s)}{\mathrm{d} s}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} \mathrm{ad}_{\Omega(s)}^{k}(\eta(s))$ T. Morris (2015)
- Evolved NLDBD operators:

$0 \nu \beta \beta$ transition operator in IMSRG(2)

$O^{O \nu}(s) \equiv e^{\Omega(s)} O^{0 \nu} e^{-\Omega(s)}=O^{0 \nu}+\left[\Omega, O^{0 \nu}\right]+\frac{1}{2}\left[\Omega,\left[\Omega, O^{0 \nu}\right]\right]+\cdots \cdot$

The IMSRG+GCM method: procedure

GCM
define reference state

IMSRG

evolve operators

GCM
 extract observables

- Flow equation: $\frac{d H(s)}{d s}=[\eta(s), H(s)]$ where the $\eta(s)=\frac{d U(s)}{d s} U^{\dagger}(s)$ is the so-called generator chosen to decouple a given reference state from its excitations.
- Magnus: $U(s)=e^{\Omega(s)}$

$$
\frac{\mathrm{d} \Omega(s)}{\mathrm{d} s}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} \operatorname{ad}_{\Omega(s)}^{k}(\eta(s))
$$

T. Morris (2015)

- Evolved E2 operators:

$$
T^{\lambda}(s) \equiv e^{\Omega(s)} T^{\lambda} e^{-\Omega(s)}=T^{\lambda}+\left[\Omega, T^{\lambda}\right]+\frac{1}{2}\left[\Omega,\left[\Omega, T^{\lambda}\right]\right]+\ldots
$$

The IMSRG+GCM method: procedure

GCM
define

reference state

IMSRG

evolve operators

GCM

extract observables

- Wave function of low-lying states

$$
\left|\Psi^{J M Z N}\right\rangle=\sum_{\boldsymbol{Q}_{i}} F^{J Z N}\left(\boldsymbol{Q}_{i}\right)\left|J M Z N\left(\mathbf{Q}_{i}\right)\right\rangle
$$

- Hill-Wheeler-Griffin equation

$$
\sum_{\mathbf{Q}_{j}}\left[\mathcal{H}^{J N Z}\left(\mathbf{Q}_{i}, \mathbf{Q}_{j}\right)-E^{J} \mathcal{N}^{J N Z}\left(\mathbf{Q}_{i}, \mathbf{Q}_{j}\right)\right] F^{J N Z}\left(\mathbf{Q}_{j}\right)=0
$$

where the kernels of operators \hat{O} are defined as

$$
\begin{aligned}
& O^{J N Z}\left(\mathbf{Q}_{i}, \mathbf{Q}_{j}\right)=\left\langle J N Z\left(\mathbf{Q}_{i}\right)\right| \hat{O}\left|J N Z\left(\mathbf{Q}_{j}\right)\right\rangle .
\end{aligned}
$$

[^0]
Applications

- Starting from a chiral $\mathrm{NN}\left(\mathrm{N}^{3} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}\right)$ interaction (evolved with the free-space SRG) K. Hebeler et al. (2011)
■ Benchmark calculations for light nuclei: ${ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}$ and ${ }^{22} \mathrm{O} \rightarrow{ }^{22} \mathrm{Ne}$
■ Application to candidate $0 \nu \beta \beta$ process: ${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$

Benchmark calculation: $0 \nu \beta \beta$ from ${ }^{8} \mathrm{He}$ to ${ }^{8} \mathrm{Be}$

Figure: The potential energy surfaces from different calculations with $e_{\mathrm{Max}}=6, \hbar \Omega=16 \mathrm{MeV}$.

Benchmark calculation: $0 \nu \beta \beta$ from ${ }^{8} \mathrm{He}$ to ${ }^{8} \mathrm{Be}$

\square IMSRG+PNAMP(Minimum): $\mathrm{M}_{\text {Tot }}^{0 \nu}(\mathrm{GT} / \mathrm{F} / \mathrm{TE})=1.40(1.19 / 0.28 /-0.07)$
■ IMSRG+GCM: $\mathrm{M}_{\text {Tot }}^{0 \nu}(\mathrm{GT} / \mathrm{F} / \mathrm{TE})=0.17(0.19 / 0.04 /-0.06)$

Benchmark calculation: $0 \nu \beta \beta$ from ${ }^{22} \mathrm{O}$ to ${ }^{22} \mathrm{Ne}$

Figure: The potential energy surface from PNP (VAP) +HFB calculation with $e_{\mathrm{Max}}=6, \hbar \Omega=16 \mathrm{MeV}$.
$\square{ }^{22} \mathrm{O}$ is dominated by spherical state
$\square{ }^{22} \mathrm{Ne}$ is dominated by prolate deformed state

Application: $0 \nu \beta \beta$ from ${ }^{22} \mathrm{O}$ to ${ }^{22} \mathrm{Ne}$

Benchmark calculation: $0 \nu \beta \beta$ from ${ }^{22} \mathrm{O}$ to ${ }^{22} \mathrm{Ne}$

Impact of the 3 N interaction

IMSRG+PNAMP (minimum)

- $M^{0 \nu}=0.49$ by the $2 \mathrm{~N}+3 \mathrm{~N}$ interaction

■ $M^{0 \nu}=0.34$ by the 2 N interaction

IMSRG+GCM

- $M^{0 \nu}=0.43$ by the $2 N+3 N$ interaction

■ $M^{0 \nu}=0.15$ by the 2 N interaction

Results from NCSM and CC calcualtions

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$

Extrapolation

$$
E\left(e_{\operatorname{Max}}\right)=E(\infty)+a \exp \left(-b \cdot e_{\operatorname{Max}}\right)
$$

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$

- IMSRG+GCM: Low-energy structure of ${ }^{48} \mathrm{Ti}$ is reasonably reproduced (spectrum stretched). Inclusion of non-collective configurations from neutron-proton isoscalar pairing fluctuation can compress the spectra further by about 6%.
■ IMSRG+CI(T0 \rightarrow T1): the spectrum becomes more stretched in a larger model space (more collective correlations).

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$

Configuration-dependent NME

The $M^{0 \nu}$ is decreasing dramatically with the quadrupole deformation, but moderately with $\phi_{n p}$ at $\beta_{2}=0.2$ in ${ }^{48} \mathrm{Ti}$.

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$

$$
M^{0 \nu}=\int d r_{12} C^{0 \nu}\left(r_{12}\right)
$$

- The quadrupole deformation in ${ }^{48} \mathrm{Ti}$ changes both the short and long-range behaviors
■ Neutron-proton isoscalar pairing is mainly a short-range effect

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$

$$
C^{0 \nu}\left(r_{12}\right)=\sum_{p \leq p^{\prime}, n \leq n^{\prime}} \cdot \sum_{J} C_{p p^{\prime} n n^{\prime}}^{J}\left(r_{12}\right),
$$

with

$$
C_{p p^{\prime} n n^{\prime}}^{J}\left(r_{12}\right)=\frac{(2 J+1)}{\sqrt{\left(1+\delta_{p p^{\prime}}\right)\left(1+\delta_{n n^{\prime}}\right)}}\left\langle\left(p p^{\prime}\right) J\right| \bar{O}^{0 \nu}\left(r_{12}\right)\left|\left(n n^{\prime}\right) J\right\rangle \rho_{p p^{\prime} n n^{\prime}}^{J}
$$

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$ (preliminary results)

- The value from Markov-chain Monte-Carlo extrapolation is $M^{0 \nu}=0.61_{-0.04}^{+0.05}$
- The neutron-proton isoscalar pairing fluctuation quenches $\sim 17 \%$ further, which might be canceled out partially by the isovector pairing fluctuation.

Summary

Take-away messages:

- Worldwide ton-scale experiments are proposed to measure the $0 \nu \beta \beta$ from which the determination of neutrino mass relies on the NMEs.
- Several groups have begun programs to calculate the NMEs from first principles, taking advantage of a flowering of ab initio nuclear-structure theory in the last couple of decades.
- The multi-reference IMSRG+GCM opens a door to modeling deformed nuclei with realistic nuclear forces (from chiral EFT). Many interesting phenomena of low-energy physics (shape transition, coexistence, cluster structure) can be explored within this framework.
■ The NME from ${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$ is calculated from first principles.
What's next:
■ Extension to heavier candidate nuclei, like ${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$ and ${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$.
■ More benchmarks among several different ab initio methods for the NMEs.
- Quantification of uncertainties from different sources, impacts of induced three-body operators, two-body currents, contact transition-operator term, etc

Collaborators and acknowledgement

Michigan State University

- Scott Bogner
- Heiko Hergert
- Roland Wirth

University of North Carolina at Chapel Hill

- Benjamin Bally
- Jonanthan Engel

Iowa State University

- Robert A. Basili

■ James P. Vary

Southwest University

- Longjun Wang

Thank your for your attention!

Application: $0 \nu \beta \beta$ from ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$

- The $n p$ isoscalar pairing amplitude:

$$
\phi_{n p}=\langle\Phi| P_{0}^{\dagger}|\Phi\rangle+\langle\Phi| P_{0}|\Phi\rangle
$$

with

$$
P_{\mu}^{\dagger}=\frac{1}{\sqrt{2}} \sum_{\ell} \hat{\ell}\left[a_{\ell}^{\dagger} a_{\ell}^{\dagger}\right]_{0 \mu 0}^{L=0, J=1, T=0}
$$

- Collective wave functions of g.s. extended along the $\phi_{n p}$.

Neutrinoless double beta-decay: contribution from nuclear physig 영

$\boldsymbol{\beta} \boldsymbol{\beta}$ decay (candidate) nuclei

$$
\left[T_{1 / 2}^{0 \nu}\right]^{-1}=G_{0 \nu}\left|\frac{\left\langle m_{\beta \beta}\right\rangle}{m_{e}}\right|^{2}\left|M^{0 \nu}\right|^{2}
$$

where the phase-space factor $G_{0 \nu}\left(\sim 10^{-14} \mathrm{yr}^{-1}\right)$ can be evaluated precisely Kotila ('12), Stoica ('13). The effective neutrino mass is related to the masses m_{k} and mixing matrix elements $U_{e k}$ of neutrino species

[^0]: JMY, J. Engel, L. J. Wang, C. F. Jiao, and H. Hergert (2018)

