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Progress of Ab Initio Methods

Samuel

neutron dripline = ab initio calculation with NN and 3N interactions

neutron drpline = ab initio calculation with NN and 3N interactions
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Progress of Ab Initio Methods

Realistic interactions from
chiral effective field theory.

RG softening of potentials
to reduce correlations.

Exponential improvements

in high-performance
computing.

Polynomially scaling
many-body methods like
Coupled Cluster Theory.

neutron drpline = ab initio calculation with NN and 3N interactions
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Coupled Cluster Theory

Coupled cluster theory is based of the exponential ansatz,
W) = e |®)
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Coupled-Cluster Effective Hamiltonian

@ Many-body Schrodinger equation:
AlW) = AeT |o) = EeT|0)
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Non-Hermitian Effective Hamiltonian

O : O Example: Pairing model at the doubles approximation.
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Equation of Motion Method

EOM method builds on the closed-shell ground state,
W,.) = ’Qu V) = é/LeT‘q)O)
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Dual Solutions

Non-Hermitian H has left-eigenvalue problem,
(Pol E/L Hx = (Pol [#wll’
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Dual Solutions

Non-Hermitian H has left-eigenvalue problem,
(®o| L, Hy = (o] Loy,
[E/0+[1+[2+

Ground state left eigenvector
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Coupled Cluster Ov55 NME

Ov 3 operator derived from chiral EFT using the closure approximation
0= 0% + 0¥ + O%

OvBp nuclear matrix element
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0v3/ Benchmarks in Light Nuclei: #C and '°He
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CCSDT-3 CCSDT-1

CCsD

CC calculations of 1*C — 140
agree well with NCSM. The
mirror structure of the initial and
final nuclei make this comparison
somewhat trivial.

CC calculations of 1°He — 1°Be
also agree with NCSM. The final
nuclei has an open-shell structure.

Both of these cases have
well-converged initial and final
wavefunctions.



0v3/ Benchmarks in Light Nuclei: 8He and 2?0
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CC calculations of 8He — 8Be
and 220 — 22Ne do not agree
well with NCSM.

While the initial wavefunctions
are well-converged, the spherical
basis does not capture the
deformed, open-shell final states.

Describing these states would
require correlations beyond
double and triple excitations.



0v3/3 Decay of #8Ca
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Like the ground states of Be and ?>Ne, *®Ti has a deformed,

open-shell structure.
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Spectrum of “8Ti with Spherical Coupled Cluster
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Inability to calculate 4™ and 27 states suggest triples correlations in spherical
basis do not capture deformation of *Ti ground state.
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Hartree Fock Basis: Spherical

22 0 22 Ne
Protons Neutrons
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1) Compute spherical HF basis of initial nucleus
2) Decouple initial nucleus ground state
3) Diagonalize EOM ground state of final nucleus

Pros: Maintains total angular momentum and is computationally efficient.

Cons: Cannot feasibly calculate open-shell, deformed nuclei.
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Hartree Fock Basis: Deformed

22Ne 220

Protons Neutrons Protons Neutrons

1) Compute deformed HF basis of final nucleus

2) Decouple final nucleus ground state
3) Diagonalize EOM ground state of initial nucleus

Pros: Can calculate open-shell, deformed nuclei without EOM diagonalization.

Cons: Doesn't preserve total angular momentum and is more computationally
expensive.
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0v3/ Benchmarks in Light Nuclei: 8He and 2?0
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0v3/ Benchmarks in Light Nuclei: #C and '°He
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Deformed CC calculations of
14C - 140 and °He — 19Be siill
agree well with NCSM.

Adding triples to the open-shell
10Be can account for the
discrpencies between bases and
NCSM.
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0v383 Decay of #8Ca: Deformed Basis
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0vBB NME of *C — 140 between 0.20 — 1.17.

Large difference shows importance of deformation and can be
resolved with additional correlations.
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Summary

@ Coupled cluster Ov503 calculations agree well with NCSM
benchmarks of light nuclei with well-described final states.

@ Deformed coupled cluster can address problems involving
open-shell, deformed nuclei.

o The deformed ground state of “8Ti is not easily obtained.

@ Both a deformed basis and triples corrections are required to
obtain quality ground states for “8Ti and “8Ca.
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Current and Future Work

Add triples correlations and continue convergence studies of
48T — MCa.

Investigate different deformation parameters of 48Ti.

Calculate contribution of missing LO contact term.

Use developed machinery for 2v33 decays.

Use deformed basis to calculate previously intractable case of
76Ge
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Coupled Cluster 2v35 NME: Continued Fraction Method
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Coupled Cluster 2v35 NME: Continued Fraction Method
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Define left/right Lanczos pivot vectors for initial and final nuclei
(] = (@0 LsO  |wi) = O|Po) (#] = (®o| O |1g) = OTR(y|

Use left/right Lanczos coefficients for continued fraction

. 1 i L
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Converges to machine precision after ~10 iterations.
Summing explicitly takes ~50 intermediate states with 300-400 iterations.
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2v 33 Decay Benchmark
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2v 3 calculations with phenomenological interaction converge with FCI at large
Fermi gap.
The Lanczos continued fraction method also agrees with summing over
intermediate 8Sc 1% states.

Samuel J. Novario September 10, 2019



2u3f3 of #8Ca
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Spherical CC calculations do not
reproduce the Qg-value in this
case, so the experimental value is
used.

The 2v343 calculations converge
for sufficient E3 max(*®Ti) and
E3 max(“SCa).

Given the results for Ov53 and
the deformation of *8Ti, a
deformed basis with triples is
probably necessary.
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