$0 u\beta\beta$ Matrix Elements with Coupled Cluster Theory

Samuel J. Novario

University of Tennessee Oak Ridge National Laboratory

September 10, 2019

Samuel J. Novario

Outline

Motivation

- 2 Coupled Cluster Theory
- 3 Equation of Motion Extensions
- Initial Results
- **5** New Techniques and Results

6 Conclusions

Motivation

Petr Vogel. 2012. J. Phys. G: Nucl. Part. Phys. 39 124002.

Motivation

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G_{0\nu} \left(Q_{\beta\beta}, Z\right) |M^{0\nu}|^2 \left(\langle m_{\beta\beta}/m_e
ight)^2$$

Petr Vogel. 2012. J. Phys. G: Nucl. Part. Phys. 39 124002.

Different models give inconsistent results.

Need precise control of calculation with quantified uncertainties.

Motivates the use of microscopic *ab initio* methods.

Progress of Ab Initio Methods

Samuel J. Novario

Progress of Ab Initio Methods

Realistic interactions from chiral effective field theory.

RG softening of potentials to reduce correlations.

Exponential improvements in high-performance computing.

Polynomially scaling many-body methods like Coupled Cluster Theory.

Coupled Cluster Theory

Coupled cluster theory is based of the exponential ansatz,

$$|\Psi
angle = e^{\hat{T}} |\Phi_0
angle$$

 $\hat{T} \equiv \hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_A$

Coupled Cluster Theory

Coupled cluster theory is based of the exponential ansatz,

• Many-body Schrödinger equation:

$$\hat{H}|\Psi
angle=\hat{H}\mathrm{e}^{\hat{T}}|\Phi_{0}
angle=E\,\mathrm{e}^{\hat{T}}|\Phi_{0}
angle$$

• Many-body Schrödinger equation:

$$\hat{H}|\Psi
angle=\hat{H}\mathrm{e}^{\hat{T}}|\Phi_{0}
angle=E\,\mathrm{e}^{\hat{T}}|\Phi_{0}
angle$$

• Similarity-transformed Hamiltonian:

$$\bar{H} \equiv \mathrm{e}^{-\hat{T}} \, \hat{H} \mathrm{e}^{\hat{T}}$$

• Many-body Schrödinger equation:

$$\hat{H}|\Psi
angle=\hat{H}\mathrm{e}^{\hat{T}}|\Phi_{0}
angle=E\,\mathrm{e}^{\hat{T}}|\Phi_{0}
angle$$

• Similarity-transformed Hamiltonian:

$$\bar{H} \equiv \mathrm{e}^{-\hat{T}} \, \hat{H} \mathrm{e}^{\hat{T}}$$

 $\bar{H} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2!}[[\hat{H}, \hat{T}], \hat{T}] + \frac{1}{3!}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] + \frac{1}{4!}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}] + \cdots$

• Many-body Schrödinger equation:

$$\hat{H}|\Psi
angle=\hat{H}\mathrm{e}^{\hat{T}}|\Phi_{0}
angle=E\,\mathrm{e}^{\hat{T}}|\Phi_{0}
angle$$

• Similarity-transformed Hamiltonian:

$$\bar{H} \equiv \mathrm{e}^{-\hat{T}} \, \hat{H} \mathrm{e}^{\hat{T}}$$

 $\bar{H} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2!}[[\hat{H}, \hat{T}], \hat{T}] + \frac{1}{3!}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] + \frac{1}{4!}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}] + \cdots$

• Many-body Schrödinger equation:

$$\hat{H}|\Psi
angle=\hat{H}\mathrm{e}^{\hat{T}}|\Phi_{0}
angle=E\,\mathrm{e}^{\hat{T}}|\Phi_{0}
angle$$

• Similarity-transformed Hamiltonian:

$$\bar{H} \equiv \mathrm{e}^{-\hat{T}} \, \hat{H} \mathrm{e}^{\hat{T}}$$

 $\bar{H} = \hat{H} + [\hat{H}, \hat{T}] + \frac{1}{2!}[[\hat{H}, \hat{T}], \hat{T}] + \frac{1}{3!}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}] + \frac{1}{4!}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}] + \cdots$

Non-Hermitian Effective Hamiltonian

Example: Pairing model at the doubles approximation.

Ground state decoupled from excited states.

All eigenvalues are preserved without truncations and real with an appropriately-conditioned Hamiltonian.

Equation of Motion Method

EOM method builds on the closed-shell ground state,

$$|\Psi_{\mu}\rangle = \hat{R}_{\mu} |\Psi\rangle = \hat{R}_{\mu} e^{\hat{T}} |\Phi_{0}\rangle$$

 $\hat{R} \equiv r_{0} + \hat{R}_{1} + \hat{R}_{2} + \cdots$

Equation of Motion Method

EOM method builds on the closed-shell ground state,

$$|\Psi_{\mu}\rangle = \hat{R}_{\mu} |\Psi\rangle = \hat{R}_{\mu} e^{\hat{T}} |\Phi_{0}\rangle$$

 $\hat{R} \equiv r_{0} + \hat{R}_{1} + \hat{R}_{2} + \cdots$

Double charge exchange EOM

$$\hat{R}^{0\nu\beta\beta} \equiv p_1 \sqrt{n_1 p_2} \sqrt{n_2 + p_1} \sqrt{n_1 p_2} \sqrt{n_2} + \cdots$$

Equation of Motion Method

EOM method builds on the closed-shell ground state,

$$|\Psi_{\mu}\rangle = \hat{R}_{\mu} |\Psi\rangle = \hat{R}_{\mu} e^{\hat{T}} |\Phi_{0}\rangle$$

 $\hat{R} \equiv r_{0} + \hat{R}_{1} + \hat{R}_{2} + \cdots$

Double charge exchange EOM

$$\hat{R}^{0\nu\beta\beta} \equiv \hat{P}_{1} \bigvee_{n_{1} p_{2}} \bigvee_{n_{2}} + \hat{P}_{1} \bigvee_{n_{1} p_{2}} \bigvee_{n_{2}} + \cdots$$

$$\hat{H}\hat{R}_{\mu} e^{\hat{T}} |\Phi_{0}\rangle = E_{\mu}\hat{R}_{\mu} e^{\hat{T}} |\Phi_{0}\rangle$$

$$\left(\bar{H}_{N}\hat{R}_{\mu}\right)_{c} |\Phi_{0}\rangle = \omega_{\mu}\hat{R}_{\mu} |\Phi_{0}\rangle$$

Non-Hermitian \overline{H} has left-eigenvalue problem,

$$egin{aligned} &\langle \Phi_0 | \, \hat{L}_\mu \, ar{H}_{
m N} = \langle \Phi_0 | \, \hat{L}_\mu \omega_\mu, \ & \hat{L} \equiv \mathit{I}_0 + \hat{L}_1 + \hat{L}_2 + \cdots \end{aligned}$$

Non-Hermitian \overline{H} has left-eigenvalue problem,

$$\begin{split} \left< \Phi_0 \right| \hat{L}_\mu \, \overline{H}_N &= \left< \Phi_0 \right| \hat{L}_\mu \omega_\mu, \\ \hat{L} &\equiv \mathit{I}_0 + \hat{L}_1 + \hat{L}_2 + \cdots \end{split}$$

Double charge exchange EOM

$$\hat{L}^{0\nu\beta\beta} \equiv \prod_{p_1} \left(\prod_{n_1 \ p_2} \left(\prod_{n_2 \ p_1} + \prod_{p_1} \left(\prod_{n_1 \ p_2} \left(\prod_{n_2 \ p_1} + \dots \right) \right) \right) \right) \right) + \cdots$$

Non-Hermitian \overline{H} has left-eigenvalue problem,

$$\begin{split} \left< \Phi_0 \right| \hat{L}_\mu \, \overline{H}_N &= \left< \Phi_0 \right| \hat{L}_\mu \omega_\mu, \\ \\ \hat{L} &\equiv \mathit{I}_0 + \hat{L}_1 + \hat{L}_2 + \cdots \end{split}$$

Double charge exchange EOM

$$\hat{L}^{0\nu\beta\beta} \equiv \prod_{p_1} \left[\int_{n_1} \int_{p_2} \int_{n_2} \hat{L}_{\mu} \hat{R}_{\nu} |\Phi_0\rangle = \delta_{\mu\nu} \right] + \cdots$$

Non-Hermitian \overline{H} has left-eigenvalue problem,

$$\begin{split} \left< \Phi_0 \right| \hat{L}_\mu \, \overline{H}_N &= \left< \Phi_0 \right| \hat{L}_\mu \omega_\mu, \\ \\ \hat{L} &\equiv \mathit{I}_0 + \hat{L}_1 + \hat{L}_2 + \cdots \end{split}$$

Ground state left eigenvector

Coupled Cluster $0\nu\beta\beta$ NME

 $0
u\beta\beta$ operator derived from chiral EFT using the closure approximation

$$\hat{O} = \hat{O}_{\mathsf{GT}}^{0
u} + \hat{O}_{\mathsf{F}}^{0
u} + \hat{O}_{\mathsf{T}}^{0
u}$$

$$\begin{split} 0\nu\beta\beta &\text{ nuclear matrix element} \\ \left|M^{0\nu}\right|^2 &= \left|\langle \mathsf{f}|\,\hat{O}\,|\mathsf{i}\rangle\right|^2 = \langle \mathsf{f}|\,\hat{O}\,|\mathsf{i}\rangle\langle\mathsf{i}|\,\hat{O}^{\dagger}\,|\mathsf{f}\rangle \\ &= \langle \Phi_0|\,\mathsf{e}^{-\hat{\tau}}\,\hat{L}_{\mathsf{f}}\hat{O}\,\mathsf{e}^{\hat{\tau}}\,|\Phi_0\rangle\langle\Phi_0|\,\mathsf{e}^{-\hat{\tau}}\,\hat{L}_0\,\hat{O}^{\dagger}\hat{R}_{\mathsf{f}}\,\mathsf{e}^{\hat{\tau}}\,|\Phi_0\rangle \\ &= \boxed{\langle \Phi_0|\,\hat{L}_{\mathsf{f}}\bar{O}\,|\Phi_0\rangle\langle\Phi_0|\,\hat{L}_0\,\bar{O}^{\dagger}\hat{R}_{\mathsf{f}}\,|\Phi_0\rangle} \end{split}$$

Similarity-transformed beta-decay operator

$$e^{-\hat{T}} \hat{O} e^{\hat{T}} = \left(\hat{O} e^{\hat{T}}\right)_{c}$$

$0\nu\beta\beta$ Benchmarks in Light Nuclei: ¹⁴C and ¹⁰He

CC calculations of ${}^{14}C \rightarrow {}^{14}O$ agree well with NCSM. The mirror structure of the initial and final nuclei make this comparison somewhat trivial.

CC calculations of $^{10}\text{He} \rightarrow {}^{10}\text{Be}$ also agree with NCSM. The final nuclei has an open-shell structure.

Both of these cases have well-converged initial and final wavefunctions.

$0\nu\beta\beta$ Benchmarks in Light Nuclei: ⁸He and ²²O

CC calculations of $^8\text{He} \rightarrow {}^8\text{Be}$ and ${}^{22}\text{O} \rightarrow {}^{22}\text{Ne}$ do not agree well with NCSM.

While the initial wavefunctions are well-converged, the spherical basis does not capture the deformed, open-shell final states.

Describing these states would require correlations beyond double and triple excitations.

Samuel J. Novario

0 uetaeta Decay of ⁴⁸Ca

Like the ground states of ⁸Be and ²²Ne, ⁴⁸Ti has a deformed, open-shell structure.

Spectrum of ⁴⁸Ti with Spherical Coupled Cluster

Inability to calculate 4^+ and 2^+ states suggest triples correlations in spherical basis do not capture deformation of 48 Ti ground state.

Hartree Fock Basis: Spherical

Compute spherical HF basis of initial nucleus
 Decouple initial nucleus ground state
 Diagonalize EOM ground state of final nucleus

Pros: Maintains total angular momentum and is computationally efficient.

Cons: Cannot feasibly calculate open-shell, deformed nuclei.

Hartree Fock Basis: Deformed

²²Ne

Compute deformed HF basis of final nucleus
 Decouple final nucleus ground state
 Diagonalize EOM ground state of initial nucleus

Pros: Can calculate open-shell, deformed nuclei without EOM diagonalization.

Cons: Doesn't preserve total angular momentum and is more computationally expensive.

$0\nu\beta\beta$ Benchmarks in Light Nuclei: ⁸He and ²²O

Deformed CC calculations of ${}^{8}\text{He} \rightarrow {}^{8}\text{Be}$ and ${}^{22}\text{O} \rightarrow {}^{22}\text{Ne}$ agree well with NCSM.

The final deformed nuclei are well described without triples corrections.

The initial spherical nuclei is sufficiently described in the deformed basis.

0 uetaeta Benchmarks in Light Nuclei: 14 C and 10 He

Deformed CC calculations of $^{14}\text{C} \rightarrow ^{14}\text{O}$ and $^{10}\text{He} \rightarrow ^{10}\text{Be}$ still agree well with NCSM.

Adding triples to the open-shell ¹⁰Be can account for the discrpencies between bases and NCSM.

Samuel J. Novario

$0\nu\beta\beta$ Decay of ⁴⁸Ca: Deformed Basis

resolved with additional correlations.

Summary

- Coupled cluster $0\nu\beta\beta$ calculations agree well with NCSM benchmarks of light nuclei with well-described final states.
- Deformed coupled cluster can address problems involving open-shell, deformed nuclei.
- The deformed ground state of ⁴⁸Ti is not easily obtained.
- Both a deformed basis and triples corrections are required to obtain quality ground states for ⁴⁸Ti and ⁴⁸Ca.

Current and Future Work

- Add triples correlations and continue convergence studies of ${}^{48}\text{Ti} \rightarrow {}^{48}\text{Ca}.$
- Investigate different deformation parameters of ⁴⁸Ti.
- Calculate contribution of missing LO contact term.
- Use developed machinery for $2\nu\beta\beta$ decays.
- $\bullet\,$ Use deformed basis to calculate previously intractable case of $^{76}\mbox{Ge}.$

Thank You!

- Thomas Papenbrock
- Gaute Hagen
- Gustav Jensen
- Jonathan Engel
- Petr Navratil

Samuel J. Novario

Coupled Cluster $2\nu\beta\beta$ NME: Continued Fraction Method

$$\left|M^{2\nu}\right|^{2} = \left|\sum_{\mu} \frac{\langle \mathsf{f}|\,\hat{O}\,|1^{+}_{\mu}\rangle\langle 1^{+}_{\mu}|\,\hat{O}\,|\mathsf{i}\rangle}{E_{\mu} - E_{i} + Q_{\beta\beta}/2}\right|^{2}$$

$$= \langle \mathsf{f} | \, \hat{O} \frac{1}{\hat{H} - E_i + Q_{\beta\beta}/2} \, \hat{O} | \mathsf{i} \rangle \langle \mathsf{i} | \, \hat{O}^{\dagger} \frac{1}{\hat{H} - E_i + Q_{\beta\beta}/2} \, \hat{O}^{\dagger} | \mathsf{f} \rangle$$

$$\langle \Phi_0 | \, \hat{L}_{\mathsf{f}} \bar{O} \frac{1}{\bar{H} - E_i + Q_{\beta\beta}/2} \, \bar{O} | \Phi_0 \rangle \langle \Phi_0 | \, \hat{L}_0 \, \bar{O}^{\dagger} \frac{1}{\bar{H} - E_i + Q_{\beta\beta}/2} \, \bar{O}^{\dagger} \hat{R}_{\mathsf{f}} | \Phi_0 \rangle$$

Coupled Cluster $2\nu\beta\beta$ NME: Continued Fraction Method

$$\left|M^{2\nu}\right|^{2} = \langle\Phi_{0}|\hat{L}_{f}\bar{O}\frac{1}{\bar{H}-E_{i}+Q_{\beta\beta}/2}\bar{O}|\Phi_{0}\rangle\langle\Phi_{0}|\hat{L}_{0}\bar{O}^{\dagger}\frac{1}{\bar{H}-E_{i}+Q_{\beta\beta}/2}\bar{O}^{\dagger}\hat{R}_{f}|\Phi_{0}\rangle$$

Define left/right Lanczos pivot vectors for initial and final nuclei $\langle \tilde{\nu}_{\rm f}| = \langle \Phi_0 | \hat{L}_{\rm f} \bar{O} | \nu_i \rangle = \bar{O} | \Phi_0 \rangle \quad \langle \tilde{\nu}_i | = \langle \Phi_0 | \hat{L}_0 \bar{O}^{\dagger} | \nu_{\rm f} \rangle = \bar{O}^{\dagger} \hat{R}_{\rm f} \langle \Phi_0 |$

Use left/right Lanczos coefficients for continued fraction

$$\left|M^{2\nu}\right|^{2} = \left<\tilde{\nu}_{\mathrm{f}}|\nu_{\mathrm{i}}\right> \left[\frac{1}{a_{0} - Q_{\beta\beta} - \frac{b_{0}^{2}}{a_{1} - Q_{\beta\beta} - \frac{b_{1}^{2}}{\cdots}}}\right] \left<\tilde{\nu}_{\mathrm{i}}|\nu_{\mathrm{f}}\right> \left[\frac{1}{a_{0}^{\dagger} - Q_{\beta\beta} - \frac{b_{0}^{\dagger 2}}{a_{1}^{\dagger} - Q_{\beta\beta} - \frac{b_{1}^{\dagger 2}}{\cdots}}}\right]$$

 $\label{eq:converges} Converges to machine precision after \sim\!10 \text{ iterations}.$ Summing explicitly takes $\sim\!50$ intermediate states with 300-400 iterations.

$2 u\beta\beta$ Decay Benchmark

 $2\nu\beta\beta$ calculations with phenomenological interaction converge with FCI at large Fermi gap.

The Lanczos continued fraction method also agrees with summing over intermediate $^{48}\mathrm{Sc}\ 1^+$ states.

2 uetaeta of 48 Ca

Spherical CC calculations do not reproduce the $Q_{\beta\beta}$ -value in this case, so the experimental value is used.

The $2\nu\beta\beta$ calculations converge for sufficient $E_{3 max}(^{48}\text{Ti})$ and $E_{3 max}(^{48}\text{Ca})$.

Given the results for $0\nu\beta\beta$ and the deformation of ⁴⁸Ti, a deformed basis with triples is probably necessary.