Progress On Lattice Calculations for $\beta\beta$ Decays

Henry Monge-Camacho

University of North Carolina at Chapel Hill

DBD Collaborating Meeting UNC at Chapel Hill, September 6, 2019

LQCD Non-perturbative Renormalization

LQCD for $\beta\beta$ Decay

H. Monge-Camacho (UNC at Chapel Hill)

Short-Range Contributions

Short-Range Contributions

Short-Range Contributions

 $\begin{array}{c} n & p \\ P_1 & q_1 \\ & & k_1 \\ & & & k_2 \\ P_2 & q_2 \\ n & & & (a) \end{array}$

A. Nicholson et al. (2018). In: Phys. Rev. Lett. 121.17, p. 172501. DOI: 10.1103/PhysRevLett. 121. 172501. arXiv: 1805.02634 [nucl-th]

2 LQCD Non-perturbative Renormalization

Long-range contributions

Operator Basis

$$\begin{array}{c} \mathbb{O}_{1+}^{++} = (\bar{q}_{L}\tau^{+}\gamma^{\mu}q_{L})(\bar{q}_{R}\tau^{+}\gamma^{\mu}q_{R}) \\ \mathbb{O}_{2\pm}^{++} = (\bar{q}_{R}\tau^{+}q_{L})(\bar{q}_{R}\tau^{+}q_{L}) + (\bar{q}_{L}\tau^{+}q_{R})(\bar{q}_{L}\tau^{+}q_{R}) \\ \mathbb{O}_{3\pm}^{++} = (\bar{q}_{L}\tau^{+}q_{L})(\bar{q}_{L}\tau^{+}q_{L}) + (\bar{q}_{R}\tau^{+}q_{R})(\bar{q}_{R}\tau^{+}q_{R}) \\ \mathbb{O}_{4\pm}^{++} = (\bar{q}_{L}\tau^{+}\gamma^{\mu}q_{L} \mp \bar{q}_{R}\tau^{+}\gamma^{\mu}q_{R})(\bar{q}_{L}\tau^{+}q_{R} - \bar{q}_{R}\tau^{+}q_{L}) \\ \mathbb{O}_{5\pm}^{++} = (\bar{q}_{L}\tau^{+}\gamma^{\mu}q_{L} \pm \bar{q}_{R}\tau^{+}\gamma^{\mu}q_{R})(\bar{q}_{L}\tau^{+}q_{R} + \bar{q}_{R}\tau^{+}q_{L}) \\ \mathbb{O}_{5\pm}^{++} = (\bar{q}_{L}^{a}\tau^{+}\gamma^{\mu}q_{L}^{a})(\bar{q}_{R}^{b}\tau^{+}\gamma^{\mu}q_{R}^{b}) \\ \mathbb{O}_{2+}^{++} = (\bar{q}_{R}^{a}\tau^{+}q_{L}^{a})(\bar{q}_{R}^{b}\tau^{+}q_{L}^{b}) + (\bar{q}_{L}^{a}\tau^{+}q_{R}^{a})(\bar{q}_{L}^{b}\tau^{+}q_{R}^{b}) \\ \mathbb{O}_{2+}^{++} = (\bar{q}_{R}^{a}\tau^{+}q_{L}^{a})(\bar{q}_{R}^{b}\tau^{+}q_{L}^{b}) + (\bar{q}_{L}^{a}\tau^{+}q_{R}^{a})(\bar{q}_{L}^{b}\tau^{+}q_{R}^{b}) \\ \end{array}$$

$$\begin{array}{l} \overset{\circ}{\cup} \overset{++}{\to} = (\bar{q}_{L}^{a}\tau^{+}q_{L}^{a})(\bar{q}_{L}^{a}\tau^{+}q_{L}^{a}) + (\bar{q}_{R}^{a}\tau^{+}q_{R}^{a})(\bar{q}_{R}^{a}\tau^{+}q_{R}^{a}) \\ \overset{\circ}{\cup} \overset{++}{\to} = (\bar{q}_{L}^{a}\tau^{+}\gamma^{\mu}q_{L}^{b})(\bar{q}_{R}^{b}\tau^{+}\gamma^{\mu}q_{R}^{a}) \\ \overset{\circ}{\cup} \overset{'++}{\to} = (\bar{q}_{R}^{a}\tau^{+}q_{L}^{b})(\bar{q}_{R}^{b}\tau^{+}q_{L}^{a}) + (\bar{q}_{L}^{a}\tau^{+}q_{R}^{b})(\bar{q}_{L}^{b}\tau^{+}q_{R}^{a}) \end{array}$$

V. s, Ξ. aore, and U. Van (2018). olck In: hys. Rev. Lett. 20.20, p. 202001. Xiv: 1802 . 10097

G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: *Phys. Rev.* D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph]

Non-perturbative Renormalization on the Lattice

In the lattice:
$$\mathcal{O}_{Latt}^{R}(a) = Z(\mu, a) \cdot \mathcal{O}_{Latt}^{B}(a)$$

In the continuum: $\mathcal{O}_{cont}^{R} = \lim_{a \to 0} Z(\mu, a) \mathcal{O}_{Latt}^{B}(a)$
 A^{Bil}
 G_{R}^{-1}
 G_{R}^{-1}

Four-quark Operators

$$\Lambda_{\Gamma}(\mu, \boldsymbol{a}, \boldsymbol{m}_q) = \left(1 + \sum_{n=-1,1,2} b_n(\boldsymbol{a}\boldsymbol{m}_q)^n\right) \left(\sum_m \boldsymbol{c}_m(\boldsymbol{a}\mu)^m\right) + \sum_k \boldsymbol{d}_k(\boldsymbol{a}\mu)^k$$

LQCD for $0\nu\beta\beta$

A. Nicholson et al. (2018).In: arXiv: 1805.02634 [nucl-th]
 C. C. Chang et al. (2018). In:Nature 558.7708, pp. 91–94. arXiv:1805.12130 [hep-lat]

Method RI-SMO^M:

Three Lattice spacings:0.09,0.12,0.15fm

Projectors γ and $\not q$ show agreement after $\overline{\text{MS}}$ conversion

Step scaling functions are raise the renormalization scale (0.15)

¹C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda, and A. Soni (2009).In: Phys. Rev. D80, p. 01450 arXiv:0901.2599 [hep-ph]

Renormalization Constants Running

Renormalization Group \Rightarrow cont. running $\Sigma(\mu_1, \mu_2) = Z(\mu_1)Z(\mu_2)^{-1}$

In the Lattice: $\Sigma(\mu_1, \mu_2, a) = \Sigma(\mu_1, \mu_2)_{cont} + \Delta a^2$

Fit assuming smooth μ dependence to obtain $\Sigma(\mu_1, \mu_2)_{cont}$

R. Arthur and P. A. Boyle (2011). In: *Phys. Rev.* D83, p. 114511. arXiv: 1006.0422 [hep-lat]

H. Monge-Camacho (UNC at Chapel Hill)

	RI/SMOM	MS	
$_{i}[GeV]^{4}$	$\mu = 3 \text{ GeV}$	$\mu = 3 \text{ GeV}$	
O_1	$-1.96(14) \times 10^{-2}$	$-1.94(14) \times 10^{-2}$	
O'_1	$-7.21(53) \times 10^{-2}$	$-7.81(57) \times 10^{-2}$	
O_2	$-3.60(30) \times 10^{-2}$	$-3.69(31) \times 10^{-2}$	
O'_2	$1.05(09) \times 10^{-2}$	$1.12(10) \times 10^{-2}$	
O_3	$1.89(09) \times 10^{-4}$	$1.90(09) \times 10^{-4}$	
			$\left<^{76}{ m Se} ight { m V_{nn ightarrow}pp}~ ^{76}{ m Ge}$
			<u> </u>

_

LQCD Non-perturbative Renormalization

Methods are well known for current insertions between meson states:

$$ig\langle A | \; ar{q} \Gamma^1 q ar{q} \Gamma^2 q \; | B ig
angle \qquad ig\langle A | \; ar{q} \Gamma^1 q \; | B ig
angle$$

Bilinear current insertions between nucleon are known but more complex:

 $\langle NN | \ ar{q} \Gamma^1 q \ | NN
angle$

Four quark current insertions between nucleons even more challenging:

all x-to-all y propagators required

Four-quark Feynman-Hellman Method: $\pi^- ightarrow \pi^+$

Analog of method implemented for baryons and bilinear currents ² $\partial_{\lambda}E_{\lambda} = \langle n | H_{\lambda} | n \rangle$ $S_{\lambda} = \lambda \int d^{4}x \bar{\psi}\Gamma^{1}\psi \bar{\psi}\Gamma^{2}\psi = \lambda \int d^{4}x \mathcal{J}(x)$

$\partial_{\lambda}E_{\lambda}$

For a meson effective mass:

$$\frac{\partial m_{eff}}{\partial_{\lambda}}\Big|_{\lambda=0} = -\frac{\partial_{\lambda}C(t+\tau) + \partial_{\lambda}C(t-\tau) - 2\cosh(m_{eff}\tau)\partial_{\lambda}C(t)}{2\tau C(t) \sinh(m_{eff}\tau)}$$

For long enough t $\left.\frac{\partial m_{eff}}{\partial_\lambda}\right|_{\lambda=0}\approx \frac{\mathcal{J}_{00}}{2E_0^2}$

$\partial_{\lambda}C(t)$

Matrix element is pulled down with ∂_{λ}

$$\mathsf{N}(t) = \int d^4x \left\langle \Omega | \mathcal{T}\mathcal{O}(t)\mathcal{J}(x)\mathcal{O}^{\dagger}(0) | \Omega \right\rangle$$

²C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A. Walker-Loud (2017). In: *Phys. Rev.* D96.1, p. 014504. arXiv: 1612.06963 [hep-lat]

H. Monge-Camacho (UNC at Chapel Hill)

C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A. Walker-Loud (2017). In: *Phys. Rev.* D96.1, p. 014504. arXiv: 1612.06963 [hep-lat]

Brute force calculation on small Lattice:

$$\int d^4 x \left\langle \Omega | T \mathcal{O}(t) \mathcal{J}(x) \mathcal{O}^{\dagger}(0) | \Omega \right\rangle = \sum_{y_0 \in V} (\pi^+) \int_{t} \delta(y_0 - y) \Gamma^1 (y_0 - y) \Gamma^2 (y_0$$

Hubbard-Stratanovich Transformation:

$$e^{-\lambda^2 \int d^4 x (\overline{\psi} \Gamma \psi)^2} = \alpha \int_{-\infty}^{\infty} d\sigma e^{-\int d^4 x \{\frac{\sigma^2}{4} + \lambda i \sigma(\overline{\psi} \Gamma \psi)\}}$$

D. J. Gross and A. Neveu (1974). In: *Phys. Rev.* D10, p. 3235 R. L. Stratonovich (1957). In: *Doklady Akad. Nauk S.S.S.R.* 115, p. 1097, J. Hubbard (1959). In: *Phys. Rev. Lett.* 3, pp. 77–80

LQCD for $0\nu\beta\beta$

LQCD Non-perturbative Renormalization

Nucleon Form Factors

The a12m130 (483 x 64 x 20) with 3 sources cost as much as all other ensembles combined

 \Box 2.5 weekends on Sierra \rightarrow 16 srcs \Box Now, 32 srcs (un-constrained, 3-state fit)

□We generated a new a15m135XL (48³ x 64) ensemble (old a15m130 is 32³ x 48)

 $\Box M\pi L = 4.93$ (old $M\pi L = 3.2$)

 $\Box L_5 = 24$, $N_{src} = 16$

$$g_A = 1.2711(125) \rightarrow 1.2641(93) [0.74\%]$$

UWe are running g_A(Q²) on Summit this year (DOE INCITE)

We anticipate improving gA to ~0.5%

Slides from A. Walker-Loud, Lattice 2019

September 6, 2019

16 / 20

Nucleon Form Factors

Nucleon Axial FormFactor

PRELIMINARY

Inl=1, Q=0.196 GeV Inl=2, Q=0.393 GeV Inl=3, Q=0.589 GeV Inl=4, Q=0.785 GeV

Slides from A. Walker-Loud, Lattice 2019

24

LQCD Non-perturbative Renormalization

Non-perturbative renormalization of four-quark operators is finished

A new method is proposed to compute contributions from four-quark operators.

Next steps:

Reproduce $\pi^- \to \pi^+$ calculation with the new method Implement calculation using the Hubbard-Stratanovich transformation Apply method to $nn \to pp$ calculation

Nucleon Form Factors: Lots of data to analize

Lattice QCD People

LIVERPOO

RIKEN-iTHEMS: Chia Cheng Chang LBNL:André Walker-Loud, Chris Koerber, Ben Hörz, Ken McElvain

LLNL: David Brantley, Pavlos Vranas, Arjun Gambhir

RIKEL-BNL: Enrico Rinaldi

FZJ: Evan Berkowitz

JLab: Bálint Jóo,

W&M: Kostas Orginos, Chris Monahan

Liverpool Univ.: Nicolas Garron

Glasgow: Chris Bouchard

NERSC: Thorsten Kurth

UNC: Amy Nicholson, Henry Monge-Camacho nVidia: Kate Clark

Thanks!