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New GCM approach for 0nbb
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Some models are built on single independent-particle state.
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Shell model (SM)

Diagonalizing the Heff in the 
orthonormal basis. Protons Neutrons

Instead of solving Schrödinger 
equation in complete Hilbert space, 
one restricts the dynamics in a 
configuration space. 

Configuration interaction of 
orthonormal Slater determinants: 
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Some models are built on single independent-particle state.

1. Double-β decay 2. Matrix element 3. GCM 4. Summary

Shell model (SM)

Pros: 
Arbitrarily complex correlations within 
the model space.

Cons: 
Relatively small configuration spaces. 

at present the 0νββ decay NME 
calculations carried out by SM 
limited to one major shell.

Protons Neutrons



The Other Way Around…
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Another way to build many-body states:

Instead of configuration interaction with orthogonal states, one can 
diagonalize the Hamiltonian in a set of non-orthogonal basis.

The non-orthogonal states can be highly optimized, and hence reduce 
the dimension of basis states.

Generator-coordinate method
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Generator Coordinate Method (GCM): an approach that 
treats large-amplitude fluctuations, which is essential for 
nuclei that cannot be approximated by a single mean field. 
How it works:
① Step1: Construct basis states by constrained HFB calculation.

correlations along important coordinates (e.g., 
deformation).
② Step2: Restore the symmetry of mean-field states. Projections.

③ Step3: Diagonalize Hamiltonian in space of symmetry-restored                  
asdad nonorthogonal vacua.

GCM based on EDF has been applied to double-beta 
decay, however… 
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Current achievement is the first step in this direction: CFJ
developed a Hamiltonian-based GCM code in one and two (and 
possibly more) shells.

More correlations.
Larger model space.
MPI parallelized for high performance computing.  

Our long-term goal is to combine the virtues of both frameworks
through an EDF-based or ab-initio GCM that includes all the 
important
shell model correlations and a large single-particle space.



How to Proceed? 
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Using a realistic effective Hamiltonian.
HFB states             with multipole constraints                . 
We ”guess’ the important collective correlations.

(isoscalar, isovector pairing)

Angular momentum and particle number projection

Configuration mixing within GCM:  



Level 1 GCM: Axial Shape and pn Pairing Fluctuation
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CFJ, J. Engel, and J.D. Holt, PRC 96, 054310 (2017)



Next Question:
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Is shape + pn pairing correlations good enough?

So far so good, but 76Ge/Se, 82Se/Kr are well deformed. 
Quadrupole and pairing correlations may be predominant in this 
region.

What if we explore some heavier, near spherical or weakly 
deformed candidate nuclei?

Let’s extend Hamiltonian-based GCM to 124Sn/Te, 130Te/Xe, and 
136Xe/Ba.

In addition, it's a stepping stone to even heavier 0νββ candidates 
(e.g., 150Nd), for which no effective shell-model interaction exists.

C. Qi and Z.X. Xu, PRC 86, 044323 (2012)



Nuclear structure aspects
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CFJ, M. Horoi, and A. Neacsu, PRC 98, 064324 (2018)

Low-lying level spectra



0νββ Decay NME for Sn, Te, and Xe
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CFJ, M. Horoi, and A. Neacsu, PRC 98, 064324 (2018)

Fermi part agrees well.
Gamow-Teller part is improved 
remarkably, but still ~30% overestimated. 
WHY?



The Third question:
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So shape + pn pairing correlations is not enough.
How to pin down all the correlations that are relevant?

Instead of guessing (albeit with good reasons) the important 
external fields for constrained HFB states, let’s have the 
Hamiltonian itself tell us what to choose. 

If we denote the GCM calculation above as “standard”, here is 
where we branch from standard GCM…



The Third question:
1. Motivation 2. GCM   3. Correlation between NME and E2 4. Summary1. Double-β decay 2. GCM   3. Correlation between NME and E2 4. Summary1. Double-β decay 2. Matrix element 3. GCM 4. Summary1. Double-β decay 2. Matrix element   3. GCM 4. Summary1. Double-β decay 2. Matrix element 3. GCM 4. Summary

Let’s start from the Monte-Carlo shell model (MCSM).
M. Honma, T. Mizusaki, and T. Otsuka, PRL 77, 3315 (1996)
T. Otsuka, M. Honma, T. Mizusaki, et al. Prog. Part. Nucl. Phys. 47, 319 (2001)

The MCSM also uses non-orthogonal basis (HF) states. How does it 
choose states? 

It exploits the Thouless theorem: the exponential of any one-body 
operator  acting on a Slater determinant  is another Slater determinant 

We can apply it to quasiparticle vacua, e.g., HFB state.



QTDA Equation
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The HF minimum

MCSM starts from the HF 
minimum

Space of Slater determinants

Apply Thouless evolution to 
explore the energy landscape

Note that the curvature 
around HF minimum 
approximates the 
landscape as a quadratic in  
and thus a multi-
dimensional harmonic 
oscillator, leading to 
TDA/RPA and their 
quasiparticle extension.



QTDA Equation and  QTDA-evolved Basis
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Here we don’t adopt the full Monte Carlo machinery, just generate non-
orthogonal states by applying Thouless evolution with QTDA operators.

Low-lying excited states are approximated as linear combinations 
of two-quasiparticle excitations, represented by QTDA operator: 

One computes the matrix elements of the Hamiltonian in a basis of two-
quasiparticle excited states 

We then solve

to find the coefficients  of QTDA operator, and apply Thouless theorem 
to get a new state 

where



Comparison with standard GCM and SM
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CFJ and Calvin W. Johnson, arXiv: 1908.01873 (2019)
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Inclusion of the vibrational motion and two-quasiparticle configurations 
is important.

CFJ and Calvin W. Johnson, arXiv: 1908.01873 (2019)
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Next Steps from Here…
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Add many more reference states 
We could add more QTDA phonons, or combine QTDA evolution 
with constrained HFB. 
To reduce the computational burden, we should implement the 
efficient projection methods in the QTDA-driven GCM code.

One could try quasiparticle random phase approximation (QRPA) 
operators.

Incorporate two-particle two-hole components into the ground 
state, and hence improve the description of 0nbb decay NMEs.

Calvin W. Johnson and Kevin D. O’Mara, PRC 96, 064304 (2017)
Calvin W. Johnson and CFJ, JPG 46, 015101 (2019)



Summary
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0νββ decay is crucial probe for determining whether neutrinos are 

Majorana fermion.

Developed a Hamiltonian-based GCM which treats triaxial shape and pn
pairing correlations as coordinates. It enables treatment of systems 

presently unreachable by other methods.

Using vibration modes (e.g. QTDA) to build basis states around HFB 
shows improvement in nuclear structure aspects and 0νββ NMEs.
Both standard and QTDA-driven GCM can be further extended to other 

applications. 


