DOE Topical Collaboration Meeting, Chapel Hill, Sept 6-7 2019

EFT approach to $0\nu\beta\beta$: an update

Vincenzo Cirigliano Los Alamos National Laboratory

Outline

- Introduction: EFT for LNV and $0\nu\beta\beta$
- $0\nu\beta\beta$ from light Majorana ν exchange in chiral EFT
 - Summary of 2017-18 results
 - 2019 updates

Credits and references

• Chiral EFT approach for TeV-scale LNV (dim 7, dim 9)

Prezeau, Ramsey-Musolf, Vogel hep-ph/0303205

V. C., W. Dekens, M. Graesser, E. Mereghetti, J. de Vries, 1806.02780, JHEP 1812 (2018) 097

• Chiral EFT approach for light Majorana neutrino (dim 5)

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729, Phys.Rev. C97 (2018) no.6, 065501

V.C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck, 1802.10097, Phys.Rev.Lett. 120 (2018) no.20, 202001

V. C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

Credits and references

• Chiral EFT approach for TeV-scale LNV (dim 7, dim 9)

Prezeau, Ramsey-Musolf, Vogel hep-ph/0303205

V. C., W. Dekens, M. Graesser, E. Mereghetti, J. de Vries, 1806.02780, JHEP 1812 (2018) 097

• Chiral EFT approach for light Majorana neutrino (dim 5)

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729, Phys.Rev. C97 (2018) no.6, 065501

V.C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck, 1802.10097, Phys.Rev.Lett. 120 (2018) no.20, 202001

V. C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

EFT framework for $0\nu\beta\beta$

EFT framework for $0\nu\beta\beta$

EFT framework for $0\nu\beta\beta$

lattice QCD & many-body methods

 $T_{1/2} \begin{bmatrix} \widetilde{C}_i \begin{bmatrix} C_j \end{bmatrix} \end{bmatrix} \sim (m_W / \Lambda)^A (\Lambda_\chi / m_W)^B (k_F / \Lambda_\chi)^C$

0vββ from light Majorana neutrino (dim-5 operator)

Underlying mechanism

- Assume that Lepton Number Violation originates at very high scale (e.g. GUT see-saw with heavy V_R)
- Dominant low-energy footprint is the Weinberg operator (= Majorana mass for neutrinos written in SU(2)_W-invariant way)
- $0\nu\beta\beta$ mediated by light ν_M exchange
- Light V_R states can be included
 (> 3 light Majorana eigenstates)

GeV-scale effective Lagrangian

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

QCD + Fermi theory + Majorana mass + local operator

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}} - \left\{ 2\sqrt{2}G_F V_{ud} \ \bar{u}_L \gamma^\mu d_L \ \bar{e}_L \gamma_\mu \nu_{eL} + \frac{1}{2} m_{\beta\beta} \ \nu_{eL}^T C \nu_{eL} - C_L O_L + \text{h.c.} \right\}$$

$$O_L = \bar{e}_L e_L^c \ \bar{u}_L \gamma_\mu d_L \ \bar{u}_L \gamma^\mu d_L \qquad C_L = (8V_{ud}^2 G_F^2 m_{\beta\beta}) / M_{W_{-}}^2 \times (1 + \mathcal{O}(\alpha_s/\pi))$$

 Effect of local operator highly suppressed at nuclear level ~ O((k_F/M_W)²)

GeV-scale effective Lagrangian

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

QCD + Fermi theory + Majorana mass + local operator

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}} - \left\{ 2\sqrt{2}G_F V_{ud} \ \bar{u}_L \gamma^\mu d_L \ \bar{e}_L \gamma_\mu \nu_{eL} + \frac{1}{2} m_{\beta\beta} \ \nu_{eL}^T C \nu_{eL} - C_L O_L + \text{h.c.} \right\}$$

$$O_L = \bar{e}_L e_L^c \ \bar{u}_L \gamma_\mu d_L \ \bar{u}_L \gamma^\mu d_L \qquad C_L = (8V_{ud}^2 G_F^2 m_{\beta\beta}) / M_W^2 \times (1 + \mathcal{O}(\alpha_s/\pi))$$

 Effect of local operator highly suppressed at nuclear level ~ O((k_F/M_W)²)

$\Delta L=2$ amplitudes

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• Determined by neutrino-less non-local effective action

$\Delta L=2$ amplitudes

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

Determined by neutrino-less non-local effective action

$$\langle e_1 e_2 h_f | S_{\text{eff}}^{\Delta L=2} | h_i \rangle = \frac{8G_F^2 V_{ud}^2 m_{\beta\beta}}{2!} \int d^4 x \ \langle e_1 e_2 | \bar{e}_L(x) e_L^c(x) | 0 \rangle \int \frac{d^4 k}{(2\pi)^4} \frac{g^{\mu\nu} \hat{\Pi}_{\mu\nu}^{++}(k,x)}{k^2 + i\epsilon} ,$$

$$\hat{\Pi}_{\mu\nu}^{++}(k,x) = \int d^4 r \, e^{ik \cdot r} \ \langle h_f | T \Big(\bar{u}_L \gamma_\mu d_L(x+r/2) \ \bar{u}_L \gamma_\mu d_L(x-r/2) \Big) | h_i \rangle .$$

Momentum space representation

LNV hadronic amplitudes such as nn → ppee receive contributions from all neutrino virtual momenta (k)

$\Delta L=2$ amplitudes

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

Determined by neutrino-less non-local effective action

$$\langle e_1 e_2 h_f | S_{\text{eff}}^{\Delta L=2} | h_i \rangle = \frac{8G_F^2 V_{ud}^2 m_{\beta\beta}}{2!} \int d^4 x \ \langle e_1 e_2 | \bar{e}_L(x) e_L^c(x) | 0 \rangle \int \frac{d^4 k}{(2\pi)^4} \frac{g^{\mu\nu} \hat{\Pi}_{\mu\nu}^{++}(k,x)}{k^2 + i\epsilon} ,$$

$$\hat{\Pi}_{\mu\nu}^{++}(k,x) = \int d^4 r \ e^{ik \cdot r} \ \langle h_f | T \Big(\bar{u}_L \gamma_\mu d_L(x+r/2) \ \bar{u}_L \gamma_\mu d_L(x-r/2) \Big) | h_i \rangle .$$

Momentum space representation

LNV hadronic amplitudes such as nn → ppee receive contributions from all neutrino virtual momenta (k)

Chiral EFT captures contributions from all relevant momentum regions

$\Delta L=2$ amplitudes in EFT

"Hard neutrinos": E, $|\mathbf{k}| > \Lambda_X \sim m_N \sim GeV$

Short-range $\Delta L=2$ operators at the hadronic level, still proportional to $m_{\beta\beta}$

Short- and pion-range contributions to "Neutrino potential" mediating nn→pp

$\Delta L=2$ amplitudes in EFT

Calculable long- and pion-range contributions to "Neutrino potential" mediating nn→pp

$\Delta L=2$ amplitudes in EFT

Nuclear scale effective Hamiltonian

Kinetic terms and strong NN potential

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \,\bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i \right) \tau^+ N \,\bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 m_{\beta\beta} \,\bar{e}_L e_L^c \, V_{I=2}$$

Nuclear scale effective Hamiltonian

Kinetic terms and strong NN potential

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i\right) \tau^+ N \bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 m_{\beta\beta} \bar{e}_L e_L^c V_{I=2}$$

"Ultra-soft" (e, v) with |p|, E << k_F cannot be integrated out

Nuclear scale effective Hamiltonian

Kinetic terms and strong NN potential

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \,\bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i \right) \tau^+ N \,\bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 m_{\beta\beta} \,\bar{e}_L e_L^c \, V_{I=2}$$

"Ultra-soft" (e, V) with |p|, E << k_F
cannot be integrated out "Isotensor" 0V\beta\beta potential mediates nn \rightarrow pp.
It can be identified to a given order in Q/A_X by
computing 2-nucleon amplitudes

Anatomy of $0\nu\beta\beta$ amplitude

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential V

$$\mathbf{V}_{\mathbf{l=2}} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_X)^2$, ...

LO N²LO

Anatomy of $0\nu\beta\beta$ amplitude

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential ν

Ultrasoft V

$$\mathbf{V}_{\mathbf{l=2}} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

V

$$V_{v} \sim 1/Q^{2}, 1/(\Lambda_{\chi})^{2}, ...$$

$$\uparrow \qquad \uparrow$$

$$LO \qquad N^{2}LO$$

Loop calculable in terms of $E_n - E_i$ and $f |J_{\mu}|n > n|J^{\mu}|i>$, that also control $2\nu\beta\beta$. Contributes to the amplitude at N²LO

Leading order 0vBB potential

• Tree-level V_M exchange

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+} \tau^{(b)+} \left\{ \frac{1}{\mathbf{q}^2} \left\{ 1 - g_A^2 \left[\sigma^{(a)} \cdot \sigma^{(b)} - \sigma^{(a)} \cdot \mathbf{q} \, \sigma^{(b)} \cdot \mathbf{q} \, \frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2} \right] \right\} \quad \begin{array}{l} \text{Hadronic} \\ \text{input: } \mathbf{g}_A \end{array}$$

Leading order 0vBB potential

• Tree-level V_M exchange

• Short-range coupling $g_v \sim 1/Q^2 \sim 1/k_F^2$

renormalization of $nn \rightarrow ppee$ amplitude

(only in ${}^{1}S_{0}$ channel) required by

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+}\tau^{(b)+}\left\{\frac{1}{\mathbf{q}^2}\left\{1 - g_A^2\left[\sigma^{(a)}\cdot\sigma^{(b)} - \sigma^{(a)}\cdot\mathbf{q}\,\sigma^{(b)}\cdot\mathbf{q}\,\frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2}\right]\right\} \quad \begin{array}{l} \text{Hadronic} \\ \text{input: } \mathbf{g}_A \end{array}$$

- $V_{\nu,CT}^{(a,b)} = -2 \, g_{\nu} \, \tau^{(a)+} \tau^{(b)+}$
- $g_v \sim 1/\Lambda^2 \sim 1/(4\pi F_\pi)^2$ in NDA / Weinberg counting

Scaling of contact term

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) with LO strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

• Renormalization requires contact LNV operator at LO!

• The coupling flows to $g_v \sim I/Q^2 >> I/(4\pi F_{\pi})^2$, same order as I/q^2 from tree-level neutrino exchange

Use different regulator and scheme

- Same conclusion obtained by solving the Schroedinger equation
 - Use smeared delta function to regulate short range strong potential: $\widetilde{C} \rightarrow \widetilde{C}$ (R_S)

$$\delta^{(3)}(\mathbf{r}) \to \frac{1}{\pi^{3/2} R_S^3} e^{-\frac{r^2}{R_S^2}}$$

Compute amplitude

Scattering states "fully correlated" according to the leading order strong potential in the ¹S₀ channel

Use different regulator and scheme

- Same conclusion obtained by solving the Schroedinger equation
 - Use smeared delta function to regulate short range strong potential: $\widetilde{C} \rightarrow \widetilde{C}$ (R_S)
 - Compute amplitude

$$\mathcal{A}_{\nu} = \int d^3 \mathbf{r} \ \psi_{\mathbf{p}'}^{-}(\mathbf{r}) V_{\nu,0}(\mathbf{r}) \psi_{\mathbf{p}}^{+}(\mathbf{r})$$

 $\delta^{(3)}(\mathbf{r}) \to \frac{1}{\pi^{3/2} R_s^3} e^{-\frac{r^2}{R_s^2}}$

• Logarithmic dependence of A_v on $R_s \Rightarrow$

need LO counterterm to obtain physical, regulator-independent result

LO contact in higher waves?

• In ³P₀, renormalization of pion potential requires a LO contact term

Nogga et al, nucl-th/0506005

$$C_{3P_0}\left(N^T \vec{P}_{3P_0} N\right)^{\dagger} \cdot \left(N^T \vec{P}_{3P_0} N\right) \qquad \vec{P}_{3P_0} = -\frac{i}{\sqrt{8}} \sigma_2 \sigma \cdot \overleftarrow{\nabla} \tau_2 \vec{\tau} \\ C_{3P_0} = \mathcal{O}(4\pi/(m_N Q^3))$$

 Once strong NN force is renormalized, no cutoff dependence in neutrino-mediated nn→pp

NLO contact in ¹S₀ channel?

V.C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

• Introduce $V_{\text{Strong},I} \sim C_2 \text{ ND}^2 \text{N NN}$ with $C_2 \sim 4\pi/(MQ^2\Lambda)$

Long-Yang 1202.4053

NLO contact in $^{1}S_{0}$ channel?

V.C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

• Introduce $V_{\text{Strong,I}} \sim C_2 \text{ ND}^2 \text{N NN}$ with $C_2 \sim 4\pi/(MQ^2\Lambda)$

Long-Yang 1202.4053

Do we need new LNV short range coupling ter at NLO?
 (V_{v,1}~ g_{2v} ND²N NN)

• RGE imply that $g_{2\nu}$ has an "NLO" term ~1/(ΛQ^3) determined by LO couplings and effective range parameter + unknown N2LO piece

$$\mathbf{y} = \mathbf{y} =$$

NLO contact in ¹S₀ channel?

V.C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

• Introduce $V_{\text{Strong,I}} \sim C_2 \text{ ND}^2 \text{N NN}$ with $C_2 \sim 4\pi/(MQ^2\Lambda)$

Long-Yang 1202.4053

Do we need new LNV short range coupling ter at NLO?
 (V_{v,1}~ g_{2v} ND²N NN)

• RGE imply that $g_{2\nu}$ has an "NLO" term ~I/(ΛQ^3) determined by LO couplings and effective range parameter + unknown N2LO piece

$$\mathbf{y}_{\mathbf{r}} = \mathbf{y}_{\mathbf{r}} + \mathbf{y}_{\mathbf{r}} +$$

No new parameter needed at NLO

• Known factorizable corrections to I-body currents (radii, ...)

• Known factorizable corrections to 1-body currents (radii, ...)

• New non-factorizable contributions to $V_{\nu,2} \sim V_{\nu,0} (k_F/4\pi F_\pi)^2 [\pi$ -N loops and <u>new contact terms]</u>

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• Known factorizable corrections to 1-body currents (radii, ...)

• New non-factorizable contributions to $V_{\nu,2} \sim V_{\nu,0} (k_F/4\pi F_{\pi})^2 [\pi$ -N loops and <u>new contact terms]</u>

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body x 1-body current (and <u>another contact</u>...)

Wang-Engel-Yao 1805.10276

Calculations of these effects in light and heavy nuclei show O(10%) corrections

• New non-factorizable contributions to $V_{v,2} \sim V_{v,0} (k_F/4\pi F_\pi)^2 [\pi-N loops$ and <u>new contact terms]</u>

S. Pastore, J. Carlson, V.C., W. Dekens, E. Mereghetti, R. Wiringa 1710.05026

V.C., J. Engel, E. Mereghetti, in preparation

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body x 1-body current (and <u>another contact</u>...)

Wang-Engel-Yao 1805.10276

N2LO N2LO LO

I. Compute $\pi^- \rightarrow \pi^+$, $nn \rightarrow pp$, ... in lattice QCD and match to EFT

$$S_{\text{eff}}^{\Delta L=2} = i4G_F^2 V_{ud}^2 m_{\beta\beta} \int d^4x \,\bar{e}_L(x) e_L^c(x) \int d^4y \, S(x-y) \, g^{\mu\nu} T\left(\bar{u}_L \gamma_\mu d_L(x) \,\bar{u}_L \gamma_\nu d_L(y)\right)$$
Remnant of V propagator

I. Compute $\pi^- \rightarrow \pi^+$, $nn \rightarrow pp$, ... in lattice QCD and match to EFT

$$S_{\text{eff}}^{\Delta L=2} = i4G_F^2 V_{ud}^2 m_{\beta\beta} \int d^4x \, \bar{e}_L(x) e_L^c(x) \int d^4y \, S(x-y) \, g^{\mu\nu} T\left(\bar{u}_L \gamma_\mu d_L(x) \, \bar{u}_L \gamma_\nu d_L(y)\right)$$

Remnant of V propagator
~ Y propagator in Feynman gauge

$$(J + \times J +) \quad \text{vs} \quad (J_{\text{EM}} \times J_{\text{EM}}) = 2$$

2. Chiral symmetry relates $(g_v)^{AB}$ to one of two I=2 EM LECs (hard γ 's vs ν 's)

I. Compute $\pi^- \rightarrow \pi^+$, $nn \rightarrow pp$, ... in lattice QCD and match to EFT

$$S_{\text{eff}}^{\Delta L=2} = i4G_F^2 V_{ud}^2 m_{\beta\beta} \int d^4x \, \bar{e}_L(x) e_L^c(x) \int d^4y \, S(x-y) \, g^{\mu\nu} T\left(\bar{u}_L \gamma_\mu d_L(x) \, \bar{u}_L \gamma_\nu d_L(y)\right)$$

Remnant of V propagator
~ Y propagator in Feynman gauge

$$(J + \times J +) \quad \text{vs} \quad (J_{\text{EM}} \times J_{\text{EM}}) = 2$$

2. Chiral symmetry relates $(g_v)^{AB}$ to one of two I=2 EM LECs (hard γ 's vs V's)

$\pi\pi$ contact

• Estimates of I=2 pion coupling in large-N_C inspired resonance approach

• Good agreement with matching I-loop ChPT $\pi^{-}\pi^{-} \rightarrow e^{-}e^{-}$ to LQCD calculation*

* Xu Feng et al., 1809.10511

For related work see Detmold-Murphy 1811.0554

NN contact

• Two I=2 operators involving four nucleons

(See also Walzl-Meiβner-Epelbaum nucl-th/0010109)

$$\begin{array}{c} \mathsf{EM \ case} \\ \mathcal{Q}_{L} = \frac{\tau^{z}}{2}, \mathcal{Q}_{R} = \frac{\tau^{z}}{2} \end{array} \begin{array}{c} \frac{e^{2}C_{1}\left(\bar{N}\mathcal{Q}_{L}N\bar{N}\mathcal{Q}_{L}N - \frac{\mathrm{Tr}[\mathcal{Q}_{L}^{2}]}{6}\bar{N}\tau N \cdot \bar{N}\tau N + L \rightarrow R\right)}{\frac{e^{2}C_{2}\left(\bar{N}\mathcal{Q}_{L}N\bar{N}\mathcal{Q}_{R}N - \frac{\mathrm{Tr}[\mathcal{Q}_{L}\mathcal{Q}_{R}]}{6}\bar{N}\tau N \cdot \bar{N}\tau N + L \rightarrow R\right)} \end{array} \begin{array}{c} \mathcal{Q}_{L} = u^{\dagger}\mathcal{Q}_{L}u \\ \mathcal{Q}_{R} = u\mathcal{Q}_{R}u^{\dagger} \\ u = 1 + \frac{i\pi \cdot \tau}{2F_{\pi}} + \dots \end{array} \\ \\ \mathbf{\Delta L=2 \ case} \\ \mathcal{Q}_{L} = \tau^{+}, \mathcal{Q}_{R} = 0 \end{array} \end{array}$$

- Chiral symmetry $\Rightarrow g_v = C_1$
- NN observables cannot disentangle C_1 from C_2 (need pions), but provide data-based estimate of C_1+C_2

Connection with data

 $a_{np} = -23.7 \pm 0.02 \text{ fm}$, $a_{nn} = -18.90 \pm 0.40 \text{ fm}$, $a_C = -7.804 \pm 0.005 \text{ fm}$.

• $C_1 + C_2$ controls CIB combination of ${}^{1}S_0$ scattering lengths $a_{nn} + a_{C} - 2 a_{np}$

1907.11254

Connection with data

 $a_{np} = -23.7 \pm 0.02 \text{ fm}$, $a_{nn} = -18.90 \pm 0.40 \text{ fm}$, $a_C = -7.804 \pm 0.005 \text{ fm}$.

- C₁ + C₂ controls CIB combination of ¹S₀ scattering lengths a_{nn} + a_C - 2 a_{np}
- Fit to data, including LO strong, Coulomb potential, pion EM mass splitting, and contact terms confirms the scaling $C_1 + C_2 >> 1/(4\pi F_{\pi})^2$

MS-bar scheme analysis [1907.11254]

Connection with data

 $a_{np} = -23.7 \pm 0.02 \text{ fm}$, $a_{nn} = -18.90 \pm 0.40 \text{ fm}$, $a_C = -7.804 \pm 0.005 \text{ fm}$.

- C₁ + C₂ controls CIB combination of ¹S₀ scattering lengths a_{nn} + a_C - 2 a_{np}
- Fit to data, including LO strong, Coulomb potential, pion EM mass splitting, and contact terms confirms the scaling $C_1 + C_2 >> 1/(4\pi F_{\pi})^2$

The EFT analysis survives comparison with data

The analog of $e^2(C_1+C_2)$ is included in all high-quality potentials (AV18, CD-Bonn, chiral, ...)

MeV)

C_1+C_2 in "high-quality" NN potentials

1907.11254

$$V_{\text{CIB,S}} = -\frac{e^2}{6} \frac{\mathcal{C}_1 + \mathcal{C}_2}{2} T^{(12)} \,\delta_{R_S}^{(3)}(\mathbf{r})$$

$$T^{(12)} = 3\tau_3^{(1)}\tau_3^{(2)} - \vec{\tau}^{(1)} \cdot \vec{\tau}^{(2)}$$

Model	Ref.	R_S (fm)	$(C_1 + C_2)/2 \ ({\rm fm}^2)$	Model	Ref.	$\Lambda~({ m MeV})$	$(C_1 + C_2)/2 \ (\text{fm}^2)$
NV-Ia*	[37]	0.8	-1.03	Entem-Machleidt	[33]	500	-0.47
NV-IIa*	[37]	0.8	-1.44	Entem-Machleidt	[33]	600	-0.14
NV-Ic	[37]	0.6	-1.44	Reinert et al.	[38]	450	-0.67
NV-IIc	[37]	0.6	-0.91	Reinert et al.	[38]	550	-1.01
				NNLO_{sat}	[36]	450	-0.39

- The above fits include higher order chiral terms
- Our LO fit gives $(C_1+C_2)/2 = 0.71 \text{ fm}^2$ @ $R_s = 0.8 \text{ fm}$
- All confirm strong violation of Weinberg counting

Guesstimating numerical impact

V.C., W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

Assume $g_V \sim (C_1 + C_2)/2$ with $(C_1 + C_2)/2$ taken from fit to NN data

Evaluate impact in light nuclei using Variational Monte Carlo, with wavefunctions corresponding to the Norfolk chiral potential NV-la* [1606.06335]

> g_v contribution sizable in $\Delta I=2$ transition (due to node): for A=12, A_S/A_L = 0.75

Guesstimating numerical impact

V.C , W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. Wiringa, 1907.11254

Assume $g_v \sim (C_1 + C_2)/2$ with $(C_1 + C_2)/2$ taken from fit to NN data

Evaluate impact in light nuclei using Variational Monte Carlo, with wavefunctions corresponding to the Norfolk chiral potential NV-la* [1606.06335]

> g_v contribution sizable in $\Delta I=2$ transition (due to node): for A=12, A_S/A_L = 0.75

Transitions of experimental interest (⁷⁶Ge \rightarrow ⁷⁶Se, ...) have $\Delta I=2$ (and node) \Rightarrow expect significant effect!

- Write full amplitude as convolution of a known kernel with forward amplitude
 W⁺(q)nn → W⁻(q)pp
- Evaluate W⁺(q)nn → W⁻(q)pp in various momentum regions (q) using different techniques:

- Write full amplitude as convolution of a known kernel with forward amplitude
 W⁺(q)nn → W⁻(q)pp
- Evaluate W⁺(q)nn → W⁻(q)pp in various momentum regions (q) using different techniques:

• Pionless EFT at $q \rightarrow 0$

- Write full amplitude as convolution of a known kernel with forward amplitude
 W⁺(q)nn → W⁻(q)pp
- Evaluate W⁺(q)nn → W⁻(q)pp in various momentum regions (q) using different techniques:

- Pionless EFT at $q \rightarrow 0$
- pQCD + local matrixelement at $q_E^2 >> GeV^2$

- Write full amplitude as convolution of a known kernel with forward amplitude
 W⁺(q)nn → W⁻(q)pp
- Evaluate W⁺(q)nn → W⁻(q)pp in various momentum regions (q) using different techniques:

- Pionless EFT at $q \rightarrow 0$
- pQCD + local matrixelement at $q_E^2 >> GeV^2$

• Use electromagnetic I=2 contact term as a sanity check

Conclusions

- Chiral EFT analysis of light V_M exchange contribution to $0\nu\beta\beta$
 - Contact nn \rightarrow pp operator appears at leading order in the ${}^{1}S_{0}$ channel. Related to I=2 NN electromagnetic contact term.
 - First rough estimate of the coupling implies O(I) correction to matrix element in light nuclei
 - No new contact needed at NLO
 - At N2LO
 - new non-factorizable potential (O(10%) correction in light nuclei, same as form factor effects)
 - corrections to closure approximation due to"ultrasoft"
 V's (not discussed today)
 - 2body x Ibody currents

Backup

Details to be found in 1907.11254

- Analysis in both in pion-less and chiral EFT
- Chiral EFT with 3 regularizations / renormalization schemes
 - Dim reg (with scale μ) + minimal subtraction
 - Momentum-space cutoff Λ (in Lippmann-Schwinger eqs.)
 - Coordinate space gaussian regulator (R_s)
- Study of higher partial waves & NLO derivative operator
- Connection to electromagnetic I=2 operators worked out in detail
- Matrix elements in light nuclei using "Norfolk" chiral potentials

Ultrasoft neutrino contributions

Figure adapted from Primakoff-Rosen 1969

$$T_{\text{usoft}}(\mu_{\text{us}}) = \frac{T_{\text{lept}}}{8\pi^2} \sum_{n} \langle f|J_{\mu}|n\rangle \langle n|J^{\mu}|i\rangle \left\{ (E_2 + E_n - E_i) \left(\log \frac{\mu_{\text{us}}}{2(E_2 + E_n - E_i)} + 1 \right) + 1 \leftrightarrow 2 \right\}$$

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

- Ultrasoft V's couple to nuclear states: sensitivity to $E_n E_i$ and $\langle f ||\mu|n \rangle \langle n||\mu|i \rangle$ that also determine $2\nu\beta\beta$ amplitude
- $T_{usoft}/T_0 \sim (E_n E_i)/(4\pi k_F) \rightarrow N2LO$ contribution
- μ_{us} dependence cancels with $V_{\nu,2}$: consistency check

T_{usoft} and double commutator

$$\begin{split} \frac{dT_{\text{usoft}}}{d\log\mu_{\text{us}}} &= -T_{\text{lept}} \times \frac{1}{8\pi^2} \left\langle f \right| \left[J_{\mu}, \left[J^{\mu}, H_0 \right] \right] \left| i \right\rangle = T_{\text{lept}} \times \frac{1}{8\pi^2} \left\langle f \right| \left[\mathbf{A}, \left[\mathbf{A}, H_0 \right] \right] \left| i \right\rangle \\ &= -2 T_{\text{lept}} \times \sum_{a,b} \left\langle f \right| \tau^{(a)+} \tau^{(b)+} \tilde{\mathcal{V}}_{AA}^{(a,b)} \left| i \right\rangle , \\ -T_{\text{lept}} \frac{d(V_{\nu,2})_{fi}}{d\log\mu_{\text{us}}} &= +2 T_{\text{lept}} \times \sum_{a,b} \left\langle f \right| \tau^{(a)+} \tau^{(b)+} \tilde{\mathcal{V}}_{AA}^{(a,b)} \left| i \right\rangle , \end{split}$$

$$\tilde{\mathcal{V}}_{AA}^{(a,b)} = 2 \, \frac{g_A^4}{(4\pi F_\pi)^2} \, \frac{\sigma^{(a)} \cdot \mathbf{q} \, \sigma^{(b)} \cdot \mathbf{q} \, + \, \mathbf{q}^2 \, \mathbf{1}^{(a)} \times \mathbf{1}^{(b)}}{\mathbf{q}^2 + m_\pi^2} - \frac{g_A^2}{(4\pi)^2} \, 48C_T \, \mathbf{1}^{(a)} \times \mathbf{1}^{(b)}$$